Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  glial cells
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
EN
This work presents concepts of the use of algorithms inspired by the functions and properties of the nervous system in dense wireless networks. In particular, selected features of the brain consisting of a large number of nerve connections were analyzed, which is why they are a good model for a dense network. In addition, the action of a selected cells from the nervous system (such as neuron, microglia or astrocyte) as well as phenomena observed in it (e.g. neuroplasticity) are presented.
PL
W tej pracy przedstawiono koncepcje zastosowania algorytmów inspirowanych funkcjami i własnościami układu nerwowego w gęstych sieciach bezprzewodowych. W szczególności analizie poddano wybrane cechy mózgu składającego się z ogromnej liczby połączeń nerwowych, dlatego będących dobrym wzorem dla gęstej sieci. Ponadto przedstawiono działanie wybranych komórek z układu nerwowego (takich jak neuron, mikroglej czy astrocyt) a także zjawiska w nim obserwowane (np. neuroplastyczność).
EN
This work presents concepts of the use of algorithms inspired by the functions and properties of the nervous system in dense wireless networks. In particular, selected features of the brain consisting of a large number of nerve connections were analyzed, which is why they are a good model for a dense network. In addition, the action of selected cells from the nervous system (such as neuron, microglia or astrocyte) as well as phenomena observed in it (eg. neuroplasticity) are presented.
EN
This paper presents developments in the area of brain-inspired wireless communications relied upon in dense wireless networks. Classic approaches to network design are complemented, firstly, by the neuroplasticity feature enabling to add the learning ability to the network. Secondly, the microglia ability enabling to repair a network with damaged neurons is considered. When combined, these two functionalities guarantee a certain level of fault-tolerance and self-repair of the network. This work is inspired primarily by observations of extremely energy efficient functions of the brain, and of the role that microglia cells play in the active immune defense system. The concept is verified by computer simulations, where messages are transferred through a dense wireless network based on the assumption of minimized energy consumption. Simulation encompasses three different network topologies which show the impact that the location of microglia nodes and their quantity exerts on network performance. Based on the results achieved, some algorithm improvements and potential future work directions have been identified.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.