Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  generator kawitacji
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Purpose: The aim of the work is to present the results of own investigations concerning the geometric optimisation of constructional elements working in the environment of cavitation wear together with a computer numerical analysis. The engineering material used for constructional elements working in the environment of cavitation wear is steel, commonly used for pressure devices working at elevated temperatures, P265GH, acc. to PN-EN 10028:2010. Design/methodology/approach: SOLID EDGE ST 7 software, for synchronous designing, was used for the parametrisation of the shape, distribution, configuration and size of openings in constructional elements. Five models, with a different spacing and number of openings, were proposed for the optimisation of internal geometry of the cavitation generator and for the investigations; the models were then subjected to a numerical analysis using specialised software, ANSYS FLUENT v.16, employed for modelling the effects associated with fluid mechanics (Computational Fluid Dynamics - CFD). The data was implemented for this purpose in the software used, such as: density, yield point, tensile strength, heat conductivity coefficient for steel P265GH, material surface roughness, medium (water) flow rate, constant pressure loss of medium, pressure of steam saturation in a medium; and such data was called boundary conditions. Findings: The authors’ principal accomplishment is the optimisation of the shape, the selection of the most appropriate geometry of a constructional element generating the maximum number of cavity implosions in the environment of a flowing medium (water), with the use of computer tools dedicated to engineering design: a 3D and numerical computer analysis of fluid mechanics, CFD. Moreover, an attempt was made in this work to develop a methodology for characterisation of the phenomena accompanying the environment of cavitation wear. Practical implications: A possibility of examining the phenomena and a process of wear of a constructional element made of P265GH grade steel for pressure devices working at elevated temperatures. The demonstration and presentation of potential places, areas and sizes of erosion existing on constructional elements working in the environment of cavitation wear.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.