W artykule przedstawiamy metodę ukrywania danych w obrazach z użyciem sieci generatywnych - GAN (Generative Adversarial Networks), do generowania obrazów zawierających ukryte dane. Proponowana metoda pozwala na efektywne ukrywanie danych w obrazach, co może znaleźć zastosowanie w wielu dziedzinach, takich jak ochrona prywatności, steganografia, czy znakowanie wodne. Przedstawione w artykule wyniki stanowią podstawę do dalszych badań nad ulepszaniem metody i jej zastosowaniem w praktyce.
EN
This paper presents a method for hiding data in images using Generative Adversarial Networks (GAN) to generate images with secret data. The proposed method makes it possible to hide data in images effectively, which can find applications in many fields, such as privacy protection, steganography, and watermarking. The results presented in the article provide a basis for further research on improving the method and its application in practice.
In order to diagnose a range of cardiac conditions, it is important to conduct an accurate evaluation of eitherphonocardiogram (PCG)and electrocardiogram (ECG) data. Artificial intelligence and machine learning-based computer-assisted diagnostics are becoming increasingly commonplace in modern medicine, assisting clinicians in making life-or-death decisions. The requirement for an enormous amount of informationfor training to establish the framework for a deeplearning-based technique is an empirical challenge in the field of medicine. This increases the riskof personal information being misused. As a direct result of this issue, there has been an explosion in the study of methods for creating synthetic patient data. Researchers have attempted to generate synthetic ECG or PCG readings. To balance the dataset, ECG data were first created on the MIT-BIH arrhythmia database using LS GAN and Cycle GAN. Next, using VGGNet, studies were conducted to classify arrhythmias for the synthesized ECG signals. The synthesized signals performed well and resembled the original signal and the obtained precision of 91.20%, recall of 89.52% and an F1 scoreof 90.35%.
PL
W celu zdiagnozowania szeregu chorób serca, istotne jest przeprowadzenie dokładnej oceny danych z fonokardiogramu (PCG)i elektrokardiogram (EKG). Sztuczna inteligencja i diagnostyka wspomagana komputerowo, oparta na uczeniu maszynowym stają sięcoraz bardziej powszechne we współczesnej medycynie, pomagając klinicystom w podejmowaniu krytycznych decyzji. Z kolei, Wymóg ogromnej ilości informacjido trenowania, w celu ustalenia platformy (ang. framework) techniki, opartej na głębokim uczeniu stanowi empiryczne wyzwanie w obszarze medycyny. Zwiększa to ryzyko niewłaściwego wykorzystania danych osobowych. Bezpośrednim skutkiem tego problemu był gwałtowny rozwój badań nad metodami tworzenia syntetycznych danych pacjentów. Badacze podjęli próbę wygenerowania syntetycznych odczytów diagramów EKG lub PCG. Stąd, w celu zrównoważenia zbioru danych, w pierwszej kolejności utworzono dane EKG w bazie danych arytmii MIT-BIH przy użyciu struktur sieci generatywnych LSGAN i CycleGAN. Następnie, wykorzystując strukturę sieci VGGNet, przeprowadzono badania, mające na celu klasyfikację arytmii na potrzeby syntetyzowanych sygnałów EKG. Dla wygenerowanych sygnałów, przypominających sygnał oryginalny uzyskano dobre rezultaty. Należy podkreślić,że uzyskana dokładność wynosiła 91,20%, powtarzalność 89,52% i wynik F1 –odpowiednio 90,35%.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.