Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  generation costs
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Samochody elektryczne (SE) są obecnie uważane za jeden z najlepszych sposobów obniżenia emisji zanieczyszczeń powietrza w transporcie drogowym, w tym CO2 i hałasu w miastach. Mogą również w wydatny sposób przyczynić się do zmniejszenia zależności transportu drogowego od importu ropy naftowej. Niemniej jednak zapotrzebowanie na energię elektryczną dużej ilości SE w drogowym transporcie nie jest bez znaczenia i ma wpływ na system elektroenergetyczny. W artykule przeanalizowano potencjalny wpływ SE na popyt, podaż, strukturę i koszty wytwarzania energii elektrycznej oraz emisję CO2 i zanieczyszczeń powietrza w wyniku wprowadzenia na polskie drogi 1 mln SE do 2025 r. oraz potrojenia tej liczby do 2035 r. Do obliczeń wykorzystano model konkurencyjnego rynku energii elektrycznej ORCED. Wyniki analizy wskazują, że niezależnie od strategii ładowania, popyt SE powoduje niewielki wzrost ogólnego zapotrzebowania na energię elektryczną w Polsce i w konsekwencji również niewielki wzrost kosztów wytwarzania. Nawet duży wzrost SE w transporcie drogowym będzie powodował raczej umiarkowane zapotrzebowanie na dodatkowe moce wytwórcze, zakładając że przedsiębiorstwa energetyczne będą miały pewną kontrolę nad trybem ładowana aut. Wprowadzenie SE nie spowoduje obniżenia emisji CO2 w stosunku do samochodów konwencjonalnych w 2025 r., wręcz przeciwnie – zwiększy je niezależnie od strategii ładowania, gdyż energia dla pokrycia popytu SE pochodzi prawie wyłącznie z elektrowni węglowych. W 2035 r. natomiast, wniosek zależy od scenariusza ładowania i możliwe jest obniżenie, jak i wzrost emisji. Pojazdy elektryczne spowodują wzrost emisji netto SO2, przyczynią się natomiast do spadku emisji netto cząstek stałych oraz NOx.
EN
Electric cars (SE) are currently considered to be one of the best ways to reduce CO2 and other air emissions in the transport sector as well as noise in cities. They can reduce the dependency of road transport on imported oil in a visible way. Nevertheless, the demand for electricity for a large amount of SE in road transport is not insignificant and has an impact on the power system. The article analyzes the potential impact of SE on the demand, supply, structure and costs of electricity generation as well as emissions as a result of introducing 1 million SEs by 2025 on Polish roads, and tripling this number by 2035. The competitive electricity market model ORCED was used for the calculations. The results of the analysis indicate that regardless of the charging strategy, the demand for SEs causes a slight increase in the overall electricity demand in Poland and consequently also a slight increase in power generating costs. Even a large increase in SEs in road transport will result in a rather moderate demand for additional generation capacity, assuming that power companies will have some control over the mode of charging cars. The introduction of SEs will not reduce CO2 emissions compared to conventional cars in 2025, on the contrary will increase them regardless of the loading strategy. In 2035 however, the result depends on the charging scenario and both the increase or decrease of emissions is possible. Electric vehicles will increase SO2 net emissions, but they will contribute to a decrease in the net emissions of particulates and NOx.
2
Content available remote An analysis of the Ghanaian power generation sector using an optimization model
EN
The Ghana power sector has faced several challenges in the area of supply-demand balances alongside electricity tariff regulations, in particular during the past decade. This has had direct consequences on its ability to meet increasing demand. Other issues are expected to arise in the future, such as the introduction of carbon tax and a move to renewables to reduce atmospheric emissions. This paper addresses these issues through creating scenarios and making comparisons, which provide ideas on how these situations might affect the generation mix and the cost of generation. To this end a shortrun computable model of the Ghana power generation system was developed to analyze those scenarios. The model is developed in the General Algebraic Modelling System (GAMS) as a Linear Programming problem.
EN
The paper presents a methodology for calculating the cost of production of a unit of electric energy from photovoltaic systems, fixed and 2-axis tracking, according to the designed and constructed system working in the Institute of Electrical Engineering and Electronics of Poznan University of Technology. Assumptions and input data for the analysis, including the discount factor, are presented. A pseudorandom number generator for the assumed range of electric energy variations was created for the purpose of the calculations. The cost of electric energy production with the use of a photovoltaic system with the maximum power of 1,05 kWp was compared with other technologies.
PL
W pracy przedstawiono metodykę oceny kosztów wytwarzania jednostkowej energii elektrycznej dla układów fotowoltaicznych stacjonarnych i nadążnych dwuosiowych na przykładzie zaprojektowanego i wykonanego układu pracującego w Instytucie Elektrotechniki i Elektroniki Przemysłowej Politechniki Poznańskiej. Przedstawiono założenia oraz dane wejściowe do analizy z uwzględnieniem rachunku dyskonta. Na potrzeby obliczeń przygotowano generator liczb pseudolosowych dla założonego przedziału zmienności produkowanej energii elektrycznej. Porównano koszt produkcji energii elektrycznej z wykorzystaniem układu fotowoltaicznego o mocy maksymalnej 1,05 kWp z uwzględnieniem innych technologii wytwórczych.
PL
Zagadnienia ekonomiczne zaczynają nabierać szczególnego znaczenia w wytwarzaniu energii elektrycznej w świetle rozwoju rynku konkurencyjnego w tym sektorze. Z tego względu konkurencyjność poszczególnych rodzajów źródeł z uwzględnieniem warunków ich rozwoju, a także polityki promocyjnej państwa w odniesieniu do niektórych technologii powinna być istotnym czynnikiem w formułowaniu zarówno polityki energetycznej kraju, jak i określaniu kierunków inwestowania przez podmioty na rynku energii. W artykule przedstawiono wyniki porównania kosztów wytwarzania energii elektrycznej w rozmaitych technologiach, uśrednionych w okresie ich ekonomicznej eksploatacji z zachowaniem zasad dyskonta. Porównanie obejmuje technologie obecnie stosowane i przewidywane do wdrożenia komercyjnego około 2020 i 2030 r. Na podstawie wyników tych porównań przedstawiono niektóre wnioski, które powinny być przydatne w formułowaniu polityki energetycznej Polski.
EN
Economic issues have acquired substantial importance for the electricity generation sector especially in the light of power competitive markets development. Competitiveness of different generation technologies within the limitations caused by the environment and security of power supply should be taken into account when formulating the national energy policy as well as in choosing the investment policy by energy companies. In the article are presented some results of comparison of levelized electricity costs for different generation technologies that are foreseen to be implemented over the period up to 2050. Main conclusions based on those results, important for the energy policy for Poland, have been formulated.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.