We introduce the Sobolev-type multi-term μ-fractional evolution with generalized fractional orders with respect to another function. We make some applications of the generalized Laplace transform. In the sequel, we propose a novel type of Mittag-Leffler function generated by noncommutative linear bounded operators with respect to the given function and give a few of its properties. We look for the mild solution formula of the Sobolev-type evolution equation by building on the aforementioned Mittag-Leffler-type function with the aid of two different approaches. We share new special cases of the obtained findings.
In this paper, we obtain some closed form series solutions for the time fractional diffusion-wave equation (TFDWE) with the generalized time-fractional Caputo derivative (GTFCD) associated with a source term in polar coordinates. These solutions are found using generalized Laplace and Hankel transforms. We obtained the closed form series solutions in the form of the Polygamma function. The effect of the fractional order derivative on the diffusion-wave variable is illustrated graphically.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.