Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  generalizacja informacji geograficznej
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Proces generalizacji informacji geograficznej zawsze opierał się na wiedzy i doświadczeniu kartografa, który go wykonywał. Postępujące zmiany technologiczne, w szczególności zaś zmiana sposobu przechowywania informacji przestrzennej, polegające na zastąpieniu formy analogowej elektroniczną (zwykle opartą o bazy danych), sprawiają, że owa wiedza niezbędna w generalizacji, jakkolwiek wciąż kluczowa, jest również przechowywana w inny sposób. Dziś na podstawie wieloletniego doświadczenia kartografa budowane są bazy wiedzy, które mają umożliwić, przynajmniej częściową automatyzację procesu generalizacji. Taką bazę wiedzy dla współczesnych danych przestrzennych może stanowić np. informacja o atrybutach obiektów istotnych z punktu widzenia procesu generalizacji i reguły generalizacyjne o te atrybuty oparte. Dzisiejsze bazy danych przestrzennych posiadają szereg atrybutów a kolejne mogą zostać obliczone w oparciu o geometrię obiektów, czy ich topologię. Trudność polega jednak na wyłonieniu informacji kluczowych w procesie generalizacji informacji geograficznej. W artykule zaprezentowano wykorzystanie konceptu zbiorów rozmytych oraz reduktów. Redukt jest podzbiorem oryginalnego zbioru atrybutów, który pozwala na równie dobre podjęcie decyzji (w tym przypadku dotyczącej generalizacji), co oryginalny zbiór atrybutów. Jego wyznaczenie pozwala więc na wybranie spośród dostępnych atrybutów tych o najistotniejszym znaczeniu. Wiedza o tym, które atrybuty są kluczowe dla poszczególnych operatorów generalizacji jest więc w ten sposób wydobywana z już istniejących danych. Wyselekcjonowane atrybuty mogą zaś zostać wykorzystane do tworzenia reguł procesu generalizacji. Dzięki wykorzystaniu jedynie atrybutów tworzących redukt budowa reguł, staje się łatwiejsza a same reguły, a co za tym idzie cały proces generalizacji, bardziej przejrzysty.
EN
Generalization of geographic information was always based on the knowledge and experience of cartographer who performed it. Progressive technological changes, especially the change in data storage from analog to electronic devices (usually in the form of databases), changed a lot in generalization process. Though, the knowledge needed for it is still crucial, it is stored in different way as well. Today, knowledge bases are built based on years of cartographer’s experience. Their goal is to enable, at least partially, automation of the generalization process. This knowledge base for modern spatial data may be constituted, among others, by information about attributes of objects which are significant from the point of view of generalization process as well as the generalization rules based on those attributes. Contemporary spatial databases include a number of attributes and other information (as geometry and topology) which can be used to calculate other databases. Therefore, the challenge is to bring to light information crucial in generalization process. This paper presents the use of rough sets concept, specifically reducts, for this goal. The reduct is a subset of the original set of attributes which allows to make decisions (in this case, the decision about generalization of objects) as good as based on original attributes. Knowledge about the attributes significant in generalization process is derived, in this way, from already existing data. Selected attributes can be used for defining the generalization rules. Thanks to the use only of the attributes constituting reducts, the construction of rules becomes easier and the rules themselves, as well as generalization process, are more transparent.
EN
Implementation of INSPIRE Directive in Poland requires not only legal transposition but also development of a number of technological solutions. The one of such tasks, associated with creation of Spatial Information Infrastructure in Poland, is developing a complex model of georeference database. Significant funding for GBDOT project enables development of the national basic topographical database as a multiresolution database (MRDB). Effective implementation of this type of database requires developing procedures for generalization of geographic information (generalization of digital landscape model – DLM), which, treating TOPO10 component as the only source for creation of TOPO250 component, will allow keeping conceptual and classification consistency between those database elements. To carry out this task, the implementation of the system’s concept (prepared previously for Head Office of Geodesy and Cartography) is required. Such system is going to execute the generalization process using constrained-based modeling and allows to keep topological relationships between the objects as well as between the object classes. Full implementation of the designed generalization system requires running comprehensive tests which would help with its calibration and parameterization of the generalization procedures (related to the character of generalized area). Parameterization of this process will allow determining the criteria of specific objects selection, simplification algorithms as well as the operation order. Tests with the usage of differentiated, related to the character of the area, generalization process parameters become nowadays the priority issue. Parameters are delivered to the system in the form of XML files, which, with the help of dedicated tool, are generated from the spreadsheet files (XLS) filled in by user. Using XLS file makes entering and modifying the parameters easier. Among the other elements defined by the external parametric files there are: criteria of object selection, metric parameters of generalization algorithms (e.g. simplification or aggregation) and the operations’ sequence. Testing on the trial areas of diverse character will allow developming the rules of generalization process’ realization, its parameterization with the proposed tool within the multiresolution reference database. The authors have attempted to develop a generalization process’ parameterization for a number of different trial areas. The generalization of the results will contribute to the development of a holistic system of generalized reference data stored in the national geodetic and cartographic resources.
PL
Jednym z kluczowych wyzwań towarzyszących tworzeniu Infrastruktury Informacji Przestrzennej (IIP) w Polsce jest budowa kompleksowego modelu bazy danych georeferencyjnych. Znaczące środki przeznaczone na realizację projektu GBDOT pozwalają na opracowanie podstawowej bazy danych topograficznych kraju jako bazy wielorozdzielczej (MRDB). Efektywne wdrożenie tego typu bazy danych wymaga opracowania procedur generalizacji informacji geograficznej (uogólnienia modelu krajobrazowego DLM), która, traktując komponent TOPO10 planowanej bazy jako jedyne źródło do tworzenia komponentu TOPO250, pozwoli na zachowanie spójności pojęciowej i klasyfikacyjnej między tymi elementami bazy danych. Realizacja tego zadania wymaga implementacji, opracowanej na zlecenie Głównego Urzędu Geodezji i Kartografii, koncepcji systemu, realizującego cele procesu generalizacji informacji geograficznej poprzez wykorzystanie metod restrykcyjnych (ang. constrained-based modelling) oraz pozwalającego na zachowanie relacji topologicznych między poszczególnymi klasami obiektów i obiektami. Pełna implementacja projektowanego systemu generalizacji wymaga przeprowadzenia szeroko zakrojonych testów, które pozwolą na jego kalibrację, a także parametryzację realizowanych procedur generalizacyjnych w zależności od charakteru analizowanego obszaru. Parametryzacja te procesu umożliwi określenie kryteriów wyboru poszczególnych obiektów, algorytmów upraszczania oraz kolejności wykonywanych operacji. Dla uzyskania kartograficznie poprawnego modelu wynikowego (zarówno bazy danych przestrzennych, jak i mapy topograficznej) kluczowe znaczenie ma, zdefiniowane przez autorów, łączne przetwarzanie elementów sytuacyjnych i wysokościowych. Pozwala to na uzyskanie spójnego pod względem topologicznym komponentu pochodnego źródłowej bazy danych referencyjnych. Autorzy opracowania podjęli próbę parametryzacji procesu generalizacji informacji geograficznej dla wybranego obszaru testowego. Uogólnienie uzyskanych wyników przyczyni się do opracowania holistycznego systemu generalizacji danych referencyjnych zgromadzonych w państwowym zasobie geodezyjnym i kartograficznym.
PL
Tworzenie infrastruktury informacji przestrzennej, harmonizacja istniejących baz danych oraz dążenie do interoperacyjności usług geoinformacyjnych wymagają, by także na proces generalizacji informacji geograficznej spojrzeć z nowej perspektywy. Budowa systemów typu desktop GIS jest systematycznie zastępowana tworzeniem systemów rozproszonych, budowanych w oparciu o powszechnie akceptowane standardy oraz architekturę opartą na usługach (SOA). Zdaniem autorów artykułu, także złożony proces generalizacji kartograficznej może być implementowany jako geoinformacyjna usługa złożonej transformacji danych przestrzennych, wykorzystująca jako elementy składowe standardy OGC. Usługa WFS jest w tak rozumianym procesie wykorzystywana zarówno do dostarczania danych źródłowych, jak i do wyprowadzania informacji uogólnionej. Usługa WMS pozwala na szybką, realizowaną zarazem zgodnie z określonym szablonem graficznym, wizualizację wyników generalizacji. Pozwala to użytkownikowi systemu na wstępną ocenę wizualną i ewentualną modyfikację parametrów procesu generalizacji. Kluczową rolę odgrywa jednak usługa WPS polegająca na udostępnianiu określonej funkcjonalności, umożliwiającej przetwarzanie informacji i/lub danych. Klient korzystający z takiej usługi przesyła dane i następnie otrzymuje zwrotnie przetworzone informacje. Autorzy artykułu, proponując własne rozwiązanie koncepcyjne i implementacyjne określone mianem WMGS, widzą potencjalne wykorzystanie usług WPS jako mechanizmu tzw. "wtyczek". Udostępnienie w sieci rozległej, poprzez usługę WPS, nowego algorytmu generalizacji, pozwoliłoby na jego wykorzystanie w zaproponowanej koncepcji systemu wykorzystującego architekturę SOA. Modyfikacja opracowanego systemu sprowadzi się bowiem do dodania nowego polecenia, którego implementacja ograniczałaby się do przekazania do gotowej już usługi parametrów i danych, a następnie odebrania wyników przetworzenia. Tak zdefiniowana usługa WPS pełniłaby rolę "wtyczki" (ang. plug-in, add-on), analogiczną do stosowanych powszechnie w przeglądarkach internetowych do rozszerzania ich możliwości o nową funkcjonalność. Zdaniem autorów opracowania wdrożenie zaproponowanej w artykule koncepcji systemu informatycznego, wykorzystującego architekturę opartą na usługach i realizującego proces generalizacji informacji geograficznej, byłoby niezwykle korzystne, nie tylko ze względów naukowych, ale i produkcyjnych. Wdrożony np. w Centralnym Ośrodku Dokumentacji Geodezyjnej i Kartograficznej system wykorzystujący usługę WMGS pozwoliłby na realizację procesu generalizacji, rozumianej jako opracowanie komponentów pochodnych źródłowej bazy danych georeferencyjnych, przez wykonawców tej bazy (firmy branżowe), wojewódzkie i regionalne ośrodki dokumentacji, a nawet użytkowników instytucjonalnych i prywatnych. Instytucje dysponujące podstawowym produktem, jakim jest komponent TOPO l O bazy referencyjnej mogłyby, wykorzystując zaproponowaną usługę WMGS, uzyskać dowolny poziom uogólnienia pojęciowego i dokładności geometrycznej komponentów pochodnych, a nawet przygotować odpowiednio zgeneralizowane dane przestrzenne do opracowania map ogólnogeograficznych i tematycznych w różnych skalach.
EN
The Web Map Generalization Service (WMGS) will allow to implement the geographic information generalisation process with the use of the so-called "cloud computing" idea. The computer system to be used for implementation will be a highly developed solution, which will utilise modern approach to the idea of spatial data processing with the use of services based on services accessible in Internet. In the process of implementation, the solutions developed in various programming languages such as Java, Flex, P L/SQL, as well as advanced solutions, e.g. spatial topological data model of Oracle data base system and the application server, will be complementarily utilised. The transformation process will be controlled using a specially designed command language; depending on users/ expectations the set of these commands will become the routine controlling the generalisation process. The proposed solution utilises a structure of layers. The first level is the data base system, where spatial data will be stored and which ensures the basic functionality related to manipulation of that data. The second layer ensures spatial data processing; all algorithms related to particular generalisation processes will be implemented in that layer. The interpreter of the code used to programme the generalisation process will also operate at that level. Utilisation of the command language, specially designed for that purpose, will allow to create various variants for the generalisation process, depending on types of processed data. The third layer of the system is responsible for provision of services related to the entire generalisation process. The services based architecture will allow to wider" open" the system, since - due to utilisation of normalised services delivery mechanisms, together with the "knowledge base" - creation of external solutions/applications will be possible; they will be able to utilise once developed mechanisms to other applications. The system users will be able to utilise the WMGS services in their own systems, as well as they will be able to control the generalisation process with the use of an "inspection window", implemented based on the WMS services.
PL
Poprawna generalizacja numerycznego modelu rzeźby terenu ma szczególnie istotne znaczenie dla zasilania systemów informacji geograficznej (GIS). Dla prowadzenia wiarygodnych analiz przestrzennych szczególnie istotne jest bowiem zachowanie rzeczywistego położenia charakterystycznych kluczowych punktów form terenu. Proces uogólniania powinien mieć zatem charakter generalizacji modelu DLM (digital landscape model), nie zaś generalizacji kartograficznej DCM (digital cartographic model). Tak rozumiana automatyzacja modelowania wieloskalowego NMT wymaga zatem stosowania nowoczesnych algorytmów automatycznej generalizacji, np. techniki uczenia maszynowego. Współcześnie za dominującą tendencję w zakresie generalizacji (zarówno kartograficznej, jak i modelu) można uznać podejście algorytmiczne, polegające na stosowaniu ściśle określonych, sparametryzowanych procedur wykorzystania elementarnych operatorów generalizacji: upraszczania, agregacji, filtracji itp. Interesujące są jednak także wyniki zastosowania metod inteligencji obliczeniowej (computational intelligence) i modelowania poznawczego (cognitive modelling) w procesie uogólniania informacji geograficznej. Zaproponowane w pracy rozwiązania, oparte na algorytmach inteligencji obliczeniowej, pozwalają na generalizację danych wysokościowych określonych zarówno w strukturze GRID, jak i TIN. Autor dla każdego typu struktury danych zaproponowal dwie odmienne metodyki realizacji procesu generalizacji: wykorzystujące jawnie określone i celowo rozmyte reguły generalizacji (metoda explicite) oraz bazę wiedzy współdziałającą ze sztuczną siecią neuronową typu regresyjnego (metoda implicite). Dla kompleksowości proponowanych rozwiązań istotne znaczenie ma zaproponowany przez autora szczegółowy algorytm iteracyjnej filtracji lokalnej modelu TIN. Umożliwia on nie tylko optymalizację wynikowych błędów metrycznych, ale i utrzymywanie relacji topologicznych pomiędzy poszczególnymi elementami tworzącymi strukturę modelu nieregularnego. W zależności od przyjętego rozwiązania system decyzyjny wspomagający działanie ogólnego algorytmu ma charakter liniowy lub nieliniowy (oparty na zbiorach rozmytych lub sztucznych sieciach neuronowych). Autor zaproponowai ogólny, wieloparametrowy algorytm iteracyjnej filtracji lokalnej modelu TIN, umożliwiający autoewaluację uzyskiwanych wyników. Istotnym elementem koncepcji byto także zdefiniowanie i utrzymywanie w procesie generalizacji więzów integralności przestrzennej pomiędzy elementami strukturalnymi rzeźby terenu oraz koncepcja budowy hierarchicznego modelu TIN. Model ten może mieć monoskalową reprezentację na zdefiniowanym przez użytkownika poziomie odniesienia. Dla wartości pracy duże znaczenie ma kompleksowe ujęcie tematu generalizacji numerycznego modelu terenu. Autor zaproponował rozwiązania zarówno na szybkie uproszczenie macierzy wysokości (GRID), jak i precyzyjne modelowanie struktury nieregulamej (TIN). W zależności od zastosowanej metody inteligencji obliczeniowej pozwala to różny stopień automatyzacji obliczeń oraz optymalizacji uzyskiwanych wyników. Uzyskiwane wyniki wskazują iż zaproponowane przez autora algorytmy oraz systemy obliczeniowe umożliwiają uzyskiwanie poprawnego kartograficznie wynikowego modelu rzeźby terenu o założonej przez użytkownika dokładności geometrycznej. Dokładność ta jest znacznie lepsza niż modelu uzyskiwanego klasycznymi metodami filtracji globalnej.
EN
Correct generalisation of the digital model of the terrain relief is particularly important for supplying Geographic Information Systems (GIS) with data. Maintenance of real locations of characteristic points of key terrain features is of particular importance in order to perform reliable spatial analyses. Therefore, the process of generalisation should be performed as the DLM model (digital landscape model) generalisation and not the cartographic generalisation of the DCM model (digital cartographic model). Large scale DTM modelling automation, considered in this way, requires utilisation of modern algorithms of automated generalisation, i.e. machine learning techniques. At present, the algorithmic approach may be considered as the dominating tendency in the field of generalisation (both cartographic and model generalisation); this approach relies upon utilisation of accurately specified and parameterised procedures of utilisation of elementary operators of generalisation: simplification, aggregation, filtering etc. However, results of utilisation of computational intelligence and cognitive modelling in the process of generalisation of spatial data, also seem to be very interesting. Solutions which have been proposed in the presented work based on computational intelligence algorithms allow to generalise elevation data, specified both in GRID as well as TIN structure. For each type of data structure the author has proposed two different methodologies of implementation of the generalisation process: utilisation of openly specified and intentionally fuzzy generalisation rules (the explicate method) and the knowledge base which cooperates with the artificial neural network of the regression type (the implicite method). For the needs of complexity of the proposed solutions, the detailed algorithm of iterative, local filtration of a TIN model, presented by the author, is of particular importance. It allows not only to optimise resulting metric errors, but also to maintain topological relations between particular elements, which build the structure of the irregular model. Depending on the assumed solution, the decisive system, which supports operations of the general algorithm, is of linear or non-linear nature (based on fuzzy sets or on artificial neural networks). The author has proposed a general, multi-parametric algorithm of iterative, local filtration of the TIN model, which allows for self-evaluation of the obtained results. The important elements of the presented concept were also the definition and maintenance of spatial integrity relations between structural elements of the terrain relief and the concept of creation of a hierarchical TIN model. This model may have its mono-scale representation at a user-defined reference level. The complex approach of the issue of digital terrain model generalisation is important for the value of the entire work. The author has proposed solutions which allow for fast simplification of the elevation matrix (GRID), as well as for precise modelling of the irregular structure (TIN). Depending on the applied method of computation intelligence, this allows to apply various levels of computational automation and optimisation of the obtained results. The obtained results suggest that algorithms and computational systems proposed by the author allow to obtain the cartographically correct resulting model of the terrain relief, characterised by geometric accuracy specified by the user. This accuracy is considerably better than the model accuracy obtained with the use of conventional, global filtration methods.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.