Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  gas-assisted
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Innovative approach to uniform imprint of micron and submicron features
EN
Purpose: To develop methods for uniform imprint of micron and submicron-scale features. Design/methodology/approach: The first is gas-assisted imprint technique. In use of gas to exert isotropic pressure in hot embossing, uniform embossing throughout the area is achieved. Another approach is the electromagnetic force-assisted imprinting technology, which employs the electromagnetic force to pull the magnetic stamp with submicron-scale structures into a UV-curable resist on the substrate. The liquid photopolymer is then cured by UV-irradiation at room temperature. Furthermore, the ferromagnetic UV-curable material is made of nano-Fe powder and UV-curable polymer. The micron and submicron-scale magnetic features can be fabricated. Findings: Uniform embossing throughout the area is achieved. Under the condition of 180°C, 40kgf/cm² and 90 seconds, high quality and uniformity of micro-optical components can be fabricated. For electromagnetic force-assisted imprinting technology, a large area of sub-micron pattern with a line width of 502nm and a pitch of 1µm can be successfully fabricated under the condition of pressure of 1.6kgf/cm² for 30 seconds and UV curing for 0.5 minute. Using ferromagnetic UV-curable resist, the structures can be successfully fabricated under the pressure of 0.92kgf/cm² with the same UV-curable time. These results indicate good uniformity and controllability on both the gas-assisted hot embossing and electromagnetic force-assisted imprinting for efficient fabrication of micron- or submicron-scale structures. Practical implications: The facilities have been designed, constructed and tested. The effects of processing parameters including the processing temperature, pressure, and time on the replication quality were investigated. Originality/value: There are advantages of high uniformity, low pressure and low temperature for various applications in micron and sub-micron features and other micro-optical components such as gratings and waveguides etc.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.