Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  gamma correction
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Soil is a solid particle that covers the surface of the earth. Soil can be classified based on its color because the color indicates the nature and condition of the soil. CNN works well for image classification, but it requires large amounts of data. Augmentation is a technique to increase the amount of training data with various transformation techniques to the existing data. Rotation and Gamma Correction can be used simply as an augmentation technique and can reproduce an image with as many image variations as desired from the original image. CNN architecture has a convolution layer and Dense block has dense layers. The addition of Dense blocks to CNN aims to overcome underfitting and overfitting problems. This study proposes a combination of Augmentation and classification. In augmentation, a combination of rotation and Gamma correction techniques is used to reproduce image data. The CNN-Dense block is applied for classification. The soil image classification is grouped based on 5 labels black soil, cinder soil, laterite soil, peat soil, and yellow soil. The performances of the proposed method provide excellent results, where accuracy, precision, recall, and F1-Score performances are above 90%. It can be concluded that the combination of rotation and Gamma Correction as augmentation techniques and CNN-Dense blocks is powerful for use in soil image classification.
EN
Background: Fundus photography is an imaging modality exclusively used in ophthalmology for visualizing structures like macula, retina, and optic disc. The fundus camera has only one illumination source, which is situated at its center. Hence, structures away from the center will appear darker than naturally they are. This adverse effect caused by the uneven illumination is called as ‘vignetting’. Objectives: An algorithm termed as Gamma Correction of Illumination Component (GCIC) for devignetting fundus images is proposed in this paper. Methods: Inspired by the Retinex theory, the illumination component is computed with the help of a Maximum a Posteriori (MAP) estimator. The estimated illumination component after normalization is subjected to the Gamma correction to suppress its unevenness. Results: GCIC exhibited comparatively low values of Average Gradient of the Illumination Component (AGIC), Lightness Order Error (LOE), and computational time. The proposed method gave a comparatively better performance in terms of the performance metrics, namely contrast-to-noise-ratio (CNR), peak-signal-to-noise-ratio (PSNR), structure similarity index (SSIM), and entropy. With respect to the cumulative performance, GCIC has been observed to be better than other devignetting algorithms in the literature, like Illumination Equalization model, Homomorphic Filtering, Adaptive Gamma Correction (AGC), Modified Sigmoid Transform (MST), Imran Qureshi et al. (2019), Zheng et al., Variation-based Fusion (VF) and Zhou’s et al. Conclusion: GCIC corrects the uneven background illumination without scaling or boosting it intolerably. It produces output images, which are natural in appearance, free from color artefacts, and maintaining the sharpness of the fundus features. It is computationally fast as well.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.