Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  galvanic coupling
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This communication reports on the concerns associated with possible generation of galvanic coupling effects for construction materials that are used to manufacture mounting assemblies for ground-mounted photovoltaic (PV) power stations. For this purpose, six macro-corrosion galvanic cells were assembled, including: hot-dip Zn/Magnelis®-coated steel/Al and stainless steel (SS)/Al cells. Corrosion experiments involved continuous, ca. three-month exposure of these couplings in 3 wt.% NaCl solution, conducted at room temperature for a stable pH value of around 8. All corrosion cells were subjected to regular assessment of galvanic current-density and potential parameters, where special consideration was given to compare the corrosion behaviour of Zn-coated steel samples with that of Magnelis®-coated electrodes. Characterization of surface condition and elemental composition for examined materials was carried-out by means of SEM and EDX spectroscopy techniques.
EN
Cerussite, the most important oxidized lead mineral in the Upper Silesian Zn-Pb deposits, occurs in two readily distinct types: fine-grained cerussite replacing galena in-situ and macrocrystalline cerussite filling open fractures and cavities. Microscopic observations and thermodynamic considerations lead to the conclusion that galena can be oxidized to lead carbonate directly, not necessarily through an intermediate sulphate phase. Locally present iron sulphides undergoing oxidation acidify solutions and provide ferric ions which are important oxidizing agents. In such microenvironments, anglesite can preferentially form. Cerussite and galena commonly coexist together with non-oxidized zinc sulphides. It is difficult to explain such assemblages if galvanic couplings made of these two sulphides are not considered. These couplings are only formed when these two sulphides are in direct contact. In such an assemblage, galena undergoes oxidation, mostly to cerussite, and sphalerite is passivated. When there is no direct contact between sulphides, the galvanic couplings do not exist. Galena surfaces become covered by oxidation products which inhibit further oxidation. As such a cover does not form on sphalerite, it can be easily oxidized.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.