Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  górny karbon
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Microconchid remains were recognized from the Zacler Beds (Westphalian) of the Nowa Ruda area in Lower Silesia. They were tentatively determined as? Microconchus sp. They have planispirally coiled tubes ranging in diameter from 0.9 to 2.5 mm. Some of the specimens are juveniles, while the rest are possibly mature. Well-visible ornamentation in the form of transverse thicker ribs and thinner longitudinal striae are present on the tube exterior of some well-preserved specimens. Microconchids occur on the surface of the leaf of the seed fern species Karinopteris daviesii.
PL
W pracy przedstawiono model entropii dla węglonośnej sukcesji Górnośląskiego Zagłębia Węglowego. Tworzą ją w górnej części osady wyłącznie kontynentalne, związane ze środowiskami fluwialnymi, a w dolnej - paraliczne, gdzie obok osadów kontynentalnych występują utwory związane z szeroko pojmowaną strefą wybrzeża morskiego: przybrzeża, barier piaszczystych, plaż itp. Do badań wybrano 18 otworów wiertniczych, obejmujących swoimi profilami zarówno część kontynentalną, jak i paraliczną sukcesji węglonośnej. Dla wszystkich wyróżnionych litofacji we wszystkich profilach obliczono znormalizowaną entropię pre- i postdepozycyjną i na tej podstawie przeprowadzono klasyfikację profili. Na dendrogramie wyraźnie widać trzy grupy profili, z których pierwsza reprezentuje niemal wyłącznie osady zaliczane do serii paralicznej GZW, a druga - osady tzw. serii mułowcowej GZW. Grupa trzecia wyraźnie odbiegająca od dwóch pozostałych; reprezentowana jest przez osady zaliczane do krakowskiej serii piaskowcowej.
EN
The paper presents the model of entropy for the coal-bearing formations of the Upper Silesian Coal Basin. The coal-bearing formations include exclusively continental (fluvial) sediments in their upper parts and paralic sediments in the lower parts, the latter composed of partly continental, partly near-shore deposits laid down in broadly understood sea coast environment (shoreline, sand bars, beaches, etc.). For studies 18 boreholes were selected in which both the continental and the paralic successions were represented. For all lithofacies distinguished in all successions the normalized, pre- and post-depositional entropies were calculated. Then, successions were categorized on the basis of these calculations. The dendrogram shows three groups of successions from which the first corresponds almost exclusively to the Paralic Series and the second one - to the Mudstone Series. The third group differs distinctly from the first two groups and represents the sediments of the Krakow Sandstone Series.
EN
The paper presents results of detailed research of pore space in the Upper Carboniferous and Lower Permian sandstones and those from the Upper Carboniferous/Lower Permian transitional section. This is followed by a preliminary assessment of reservoir properties against the background of diagenetic processes. The samples were collected from 11 boreholes. The research included standard petrological investigations supported by a digital image analysis of thin sections. Compaction and cementation were the main processes reducing porosity in all the sandstones. Cementation locally reduced primary porosity to approximately 80%. Compaction was much less active. The sandstones are characterized by primary and secondary porosity. Secondary intergranular as well as intercrystalline and intracrystalline porosity developed as a result of diagenetic dissolution of feldspar grains and cements. Variability of petrophysical parameters can be a result, among others, of lithological and facies development. Upper Carboniferous and Upper Carboniferous/Lower Permian sandstones show the best reservoir properties. Lower Permian sandstones are characterized by variable properties.
PL
W pracy przeprowadzono badania właściwości porozymetrycznych skał okruchowych metodą komputerowej analizy obrazu, a następnie porównano uzyskane wyniki z wynikami porozymetrii rtęciowej. Szczegółowo omówione zostały wyniki badań uzyskane dla piaskowców górnego karbonu, pochodzących z GZW. Wyniki otrzymane przy zastosowaniu metody analizy obrazu przy skoku pomiarowym 0,5 mm i 1,0 mm oraz przy zastosowaniu porozymetrii rtęciowej porównano statystycznie. W wyniku przeprowadzonych prac wykazano przydatność metody analizy obrazu do wyznaczania porowatości i parametrów przestrzeni porowej skał okruchowych. Na podstawie szeregu przeprowadzonych prób w stosowaniu tej metody sformułowano wnioski metodyczne, dotyczące doboru powiększenia obrazu mikroskopowego czy sposobu uzyskania obrazu binarnego. Na podstawie analizy statystycznej określono, iż różnice uzyskiwane w oznaczeniu porowatości przy użyciu porozymetru rtęciowego i analizatora obrazu są zależne od średnicy zastępczej i współczynnika określającego brak wewnętrznych przeszkód w porach.
EN
In the paper there are presented measurement results of porosimetric properties for clastic rocks (50 samples, mainly sandstones) originating from different geological regions in Poland. 17 samples represented Late Carboniferous sandstones from Upper Silesia. They are fine-grained or medium--grained grey sandstones with a clay-siliceous cement. The porosity measurements for this rocks could be useful in determinig water or gas capacity and strenght of rocks. The method used in this study is computer image analysis, which is now widely used in metallurgy, biology, medicine and petrology. The porosity volume and some other porosimetric features determined with this method were calibrated against mercury injection capillary pressure measurements. Microscopy analysis were performed with Axioscope by Carl Zeiss, using 100x magnification. Porosity parameters were measured with use of KS300 Imaging System by Carl Zeiss Vision GmbH. Each of the microscope slides were analysed at circa 100 places, each 0.5 mm (1st cycle) or 1 mm (2nd cycle) apart. The magnification of 100x was chosen as the most suitable for this type of measurement. The images were transformed into grey colours and segmented (using a threshold function). The result of the segmentation was a histogram of the brightness of the image pixels. Population of different brightneses were chosen in an interactive operation, leading to a binary map of two pixel populations - black and white. Dark pixels correlate with the pores of the rock, and were contoured. After the contouring some of the areas were eliminated manually in case not all the dark areas were pores. Such a verification was possible because of simultaneous observation of the microscope image and the coloured image on the computer monitor. The total porosity was calculated as a percentage of contoured (chosen) regions to total image area. Table 1 shows the results obtained using different measurement cycles. As a result of each sample measurement there are given some more useful data, e.g. pore area, maximum and minimum sizes of pores, as well as the diameter of equivalent pore area circles. Figure 1 shows the example of histogram of pore area (AREA) for one sample. A range of coefficients, which characterise pore space area were used, e.g.: FMIN x FMAX or AREA/AREAF. FMIN x FMAX coefficient characterise isometric shape of the pore region. Mercury porosimetry measurements were carried out using mercury injection capillary pressure apparatus AutoPore 9220. The picnometer AccuPyc 1330 yielded rock density values. They differed slightly from those measured using mercury injection, because of the AccuPyc pore-filling medium, which is helium. Hence it gives higher values of mass density than those obtained in AutoPore 9220. Using these values it is possible to calculate a "total porosity". In the Table 2 it is given near the porosity value obtained using the porosimeter. The two values differ because small pores have not been penetrated by the mercury. In a consequence, the "total porosity" value was taken into consideration when comparising these results to the values obtained from computer image analysis. The precision and the correlation of the porosity measurements were tested by statistical comparison of the applied methods, taking into account all of the 50 rock samples. In the figures and tables given in the paper there were used following symbols: MM05 - for image analysis method (pitch 0.5 mm), MM1_0 - for image analysis method (pitch 1.0 mm), PORHG - for mercury porosimetry method. The statistics by measurement methods is shown in Table 3 and Fig. 2. Points referring to the 17 Late Carboniferous sandstones were in the figures darkened. Most of the total variance of the measurement results population is explained by the particular sample (rock) characteristics (99.189%). Only 0.756 and 0.055% of the variance could be attributed to the following sources, respectively: methods by parts and the methods themselves. The relationship between one of the image analysis (microscopy) methods and the mercury porosimetry method is shown by multiple regression analysis (Fig. 3). All of the analysis mentioned above show very strict correlation between the applied methods, regarding the porosity value only. The results obtained in the investigation confirmed that the computer image analysis is a good tool for porosity parameters measurement in clastic rocks. Basing on a range of tests, some methodical remarks could be made. These are concerned on: image magnification. It should be selected individually for each sample, nicols position. In case fluorescent dye technique is not applied, better result is achieved with crossed nicols, binary map creation. This could be main reason of misinterpretation. This stage of measurement cycle is mostly depended on the operator experience. The differences in porosity values obtained with mercury porosimeter and image analysis are dependent on: diameter of the circle with equivalent area (DCIRCLE): the bigger it is, the measurement less strict, AREA/AREAF coefficient (which means no inner chips within the pore region): the higher it is, the less strict measurement, moreover it was stated that the use of 0,5 mm pitch in image analysis gives more strict results of the measurement.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.