Decision-theoretic rough sets in two kinds of incomplete information systems are discussed in this paper. One is for the classical decision attribute and the other for the fuzzy decision attribute. In complete information system, the universe is partitioned with the equivalence relation. Given a concept, we get a pair of approximations of the concept using rough set theory, and the universe can be partitioned into three regions for making a decision. An incomplete information table can be expressed as a family of complete information tables. The universe is partitioned by the equivalence relation for each complete information table. The probability of each object belonging to the concept can be calculated in a completion from incomplete information system, and then the total probability of the object belonging to the concept can be obtained. Decision rules are derived using total probability instead of conditional probability in decision-theoretic rough sets. Finally, the universe is divided into three regions according to the total probability. A similar approach to fuzzy incomplete information system is examined and the universe is also divided into three regions.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.