Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  fungal image classification
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The rise in fungal infections, attributed to various factors including medical interventions and compromised immune systems, necessitates rapid and accurate identification methods. While traditional mycological diagnostics are time-consuming, machine learning offers a promising alternative. Nevertheless, the scarcity of well-curated datasets is a significant obstacle. To address this, a novel approach for identifying fungi in microscopic images using Residual Neural Networks and a subimage retrieval mechanism is proposed, with the final step involving the implementation of majority voting. The new method, applied to the Digital Images of Fungus Species database, surpassed the original patch-based classification using Convolutional Neural Networks, obtaining an overall classification accuracy of 94.7% compared to 82.4% with AlexNet FV SVM. The observed MCC metric exceeds 0.9, while AUC is near to one. This improvement is attributed to the optimization of hyperparameters and top layer architecture, as well as the effectiveness of the Mish activation function in ResNet-based architectures. Noteworthy, the proposed method achieved 100% accurate classification for images from 8 out of 9 classes after majority voting and is high resistant to overfitting, highlighting its potential for rapid and accurate fungal species identification in medical diagnostics and research.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.