Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  functionally graded piezoelectric materials
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Most of exact solutions reported for the analysis of functionally graded piezoelectric (FGP) plates are based on the assumption, that the graded plate consists of a number of layers, where the material properties within each layer are invariant. The limited works that consider the continuous variation of electro-mechanical properties are restricted to FGP materials with the exponent-law dependence on the thickness-coordinate. In the present paper, a three-dimensional (3D) exact solution is presented for cylindrical bending of the FGP laminated plates based on the state space formalism. In contrast to the other reported solutions which are restricted to FGP materials with the exponent-law dependence on the thickness-coordinate, the present exact solution considers materials with arbitrary compositional gradient. Moreover, no assumption on displacement components and the electric potential along the thickness direction of FGP layers is introduced. Regardless of the number of layers, equations of motion, charge equation, and the boundary and interface conditions are satisfied exactly. The obtained exact solution can be used to assess the accuracy of different FGP laminated plate theories and/or for validating finite element codes.
EN
The behavior of three parallel permeable cracks with different lengths in a functionally graded piezoelectric material plane subjected to anti-plane shear stress loading was studied by the Schmidt method. The problem was formulated through the Fourier transform into three pairs of dual integral equations. To solve the dual integral equations, the jumps of displacements across the crack surfaces were directly expanded in a series of Jacobi polynomials. The results show that the stress and the electric displacement intensity factors at the crack tips depend on the lengths, spacing of the cracks and the material parameters. It is also revealed that the crack shielding effect is present in functionally graded piezoelectric materials.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.