Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  functional resonance analysis method
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Ship maneuvering is a complex operation with inherent uncertainties. To express this complexity in system performance during the navigation process, an analysis model has been developed using Functional Resonance Analysis Method (FRAM) and Dynamic Bayesian Network (DBN). The functional level of dynamic work onboard is assessed and modeled using FRAM qualitatively, in which a key function and the function’s potential coupling for specific instantiation are identified. Further analysis is done by integrating the FRAM analysis with DBN for quantification. The evolution of system performance over time is determined through changes in the probability of function’s mode, namely strategic, tactical opportunistic, and scrambled. The model presented in this study concerns the fluctuation of ship officer performance to overcome the obstacles during the encounter event. As a result, the integration of FRAM-DBN shows promising usability to evaluate human performance. The essence of human adaptive capacity is also highlighted through system resilience potency, that is, the potency to learn, respond, monitor, and anticipate. We also discuss how this finding contributes to enhance safety analysis, in specific, to provide explicit representation of the dynamic in human performance in ship navigation based on Safety-II idea.
2
EN
Aviation is the fastest growing but also the safest mode of transport. International aviation organizations give the highest priority to safety while creating aviation regulations. Therefore, a safety management system (SMS) has been created. Two approaches to assuring safety in aviation may be distinguished: Safety-I and Safety-II. Safety-I is the standard approach, focused on processing the information about malfunctioning features and system elements. On the other hand, Safety-II is a new approach to safety management, based on identifying the elements or functions of the system that work properly, which enables the system to confirm resilience to undesirable effects. One of the methods utilized for the Safety-II approach in order to study complex sociotechnical systems is the FRAM (functional resonance analysis method). The method is focused on analysing daily activities in various conditions in order to create a model of work performance. The models created based on the FRAM can be used for risk analysis, accident investigations and predicting possible future events affecting aviation safety. This method allows us to simulate system constraints and uncertain states. It can also be used as support for the air traffic safety management processes based on the Safety-II approach. The following article presents a developed FRAM model for the transfer of control over aircraft. This model constitutes an example of a coordination scheme limited to basic activities of air traffic control (ATC) services, providing a general framework for the construction and operation of the FRAM model.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.