In this study, the surface morphology of composites, the effect of the particle geometry like the size and shape of the filler materials, their dispersion efficiency and interfaces are analyzed by morphological characterization. According to the tensile tests, it was found that the composites fabricated with CuO exhibit increasing trends of tensile strength in all the experiments compared to that of the composites with TiO2, which is verified by the degree of composite crystallinity determined by the strong interfacial interaction as well as the size, shape and compactness of the filler particles as observed by SEM micrograph analysis using Mountains software. Evaluation of this analysis shows similar amplitude variations in all the PSD curves of the composites and indicate a fatigue-like behavior. The stable isotropic properties in the composite samples with CuO result in a better surface finish, which was also well defined in the analysis of its surface texture and density function. Due to all these positive correlations, a significant rising trend in tensile strength (55.50, 105.53 and 20.40%) was found in every composite modified with CuO in comparison to TiO2. The highest tensile strength of the fabricated composite incorporating the CuO functional filler was found to be 105.530%. Such composites with TiO2 and CuO having a tensile strength of 117.9 and 141.95 N/mm2 respectively, may be used for the interior design of aircraft, watercraft, offices, residences, car and sports accessories and others.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.