Five models and methodology are discussed in this paper for constructing classifiers capable of recognizing in real time the type of fuel injected into a diesel engine cylinder to accuracy acceptable in practical technical applications. Experimental research was carried out on the dynamic engine test facility. The signal of in-cylinder and in-injection line pressure in an internal combustion engine powered by mineral fuel, biodiesel or blends of these two fuel types was evaluated using the vibro-acoustic method. Computational intelligence methods such as classification trees, particle swarm optimization and random forest were applied.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.