Recently, the reduction of fuels consumption is a global challenge, in particular for significant investments in the automotive sector, in order to optimize and control the parameters involved for the partial or total electrification of vehicles. Thereby, the energy management system remains the axis of progress for the development of fuel cell hybrid electric vehicles. The fuzzy controller has been widely adopted for energy monitoring, where the determination of its parameters is still challenging. In this work, this problem is investigated through a secondary development of a fuzzy energy monitoring system based on the Advisor platform and particle swarm optimization. The latter is used to determine, for different driving conditions, the best parameters that increase the fuel economy and reduce the battery energy use. As a result, five tuned fuzzy energy monitoring system models with five sets of parameters are obtained. Evaluation results confirm the effectiveness of this strategy, they also show slight differences between them in terms of fuel economy, battery state of charge variations, and overall system efficiency. However, the fuzzy energy monitoring system tuned under multiple conditions is the only one that can guarantee the minimum of the state of charge variations, no matter the driving conditions.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.