Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  fruit bunch
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Heavy metal pollution, mainly originating from textile waste containing synthetic dyes and stabilizers such as Fe, alum, and lime, poses serious risks to health and the environment. To overcome this problem, this research explores the use of activated carbon for heavy metal reduction. Empty palm oil fruit bunches (EFB) offer a promising source of activated carbon due to their high lignocellulose content and functional groups (-OH and -COOH) that enhance heavy metal adsorption. In addition, carbide waste, which is classified as hazardous and toxic waste, poses an ecological threat if disposed of incorrectly. This research focuses on the use of EFB waste and carbide to reduce Fe metal in Fe metal synthesis waste. Various adsorbent ratios (2:2.5, 2.5:2, and 2.5:2.5) and contact times ranging from 30 to 150 min were investigated, with an initial metal synthesis waste concentration of 40 mg/L. The findings showed that longer contact times resulted in the removal of large amounts of Fe(II) metal, with rates reaching 94.325%. The increase in the pH of the adsorbent mixture is caused by the alkaline nature of carbide waste in activated carbon. The Langmuir isotherm model provided the best fit to the data, with a correlation Equation of y = 0.3882x + 1.4823 (R2 = 0.995, RL = 0.556), which shows the effectiveness of the TKS-carbide waste mixture in reducing Fe(II) ions in the waste textile. The Freundlich isotherm model also showed a reasonable fit, with a correlation equation of y = -0.2804x – 0.0133 (R2 = 0.95). In summary, EFB-carbide waste adsorbent is a successful, consistent, and environmentally friendly solution for the reduction of heavy metals in textile waste.
EN
Anaerobic digestion of the date palm empty fruit bunch is a promising technology for both solid waste management and biogas production. The date palm empty fruit bunch is a lignocellulosic waste that takes more time for degradation and has a low biodegradability, thus pretreatment is needed to improve anaerobic biodegradation. In this study, the substrate was pretreated with different ratios of alkali-NaOH: 6, 18 and 30% (w/w) (ratio weight of NaOH / weight of Volatile Solid) for 10 min at room temperature to evaluate the effect of high alkali concentration on the methane potential and biodegradability. The experiment was conducted in a 5 L batch reactor under mesophilic conditions (37 °C). The methane potential of the untreated substrate was 98.5 N mL/gVS. The best methane potential improvement of 104% was achieved in the treatment of 18% (w/w) (204 N mL/gVS) with a biodegradability of 50%. Besides, two kinetic models were used to fit the experimental methane potentials and to explore process parameters (Modified Gompertz and Transference function). The best fit for predicting the parameters of methane production was observed for the 18% (w/w) pretreatment using the transference function, with a maximum methane production rate of 5 N mL/gVS.d.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.