Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  fractional-order derivative
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Fractional Sturm-Liouville operators on compact star graphs
EN
In this article, we examine two problems: a fractional Sturm-Liouville boundary value problem on a compact star graph and a fractional Sturm-Liouville transmission problem on a compact metric graph, where the orders αi of the fractional derivatives on the ith edge lie in (0,1). Our main objective is to introduce quantum graph Hamiltonians incorporating fractional-order derivatives. To this end, we construct a fractional Sturm-Liouville operator on a compact star graph. We impose boundary conditions that reduce to well-known Neumann-Kirchhoff conditions and separated conditions at the central vertex and pendant vertices, respectively, when αi→1. We show that the corresponding operator is self-adjoint. Moreover, we investigate a discontinuous boundary value problem involving a fractional Sturm-Liouville operator on a compact metric graph containing a common edge between the central vertices of two star graphs. We construct a new Hilbert space to show that the operator corresponding to this fractional-order transmission problem is self-adjoint. Furthermore, we explain the relations between the self-adjointness of the corresponding operator in the new Hilbert space and in the classical L2 space.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.