Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  fractional order system
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This paper proposes novel forecasting models for fractional-order chaotic oscillators, such as Duffing’s, Van der Pol’s, Tamaševičius’s and Chua’s, using feedforward neural networks. The models predict a change in the state values which bears a weighted relationship with the oscillator states. Such an arrangement is a suitable candidate model for out-of-sample forecasting of system states. The proposed neural network-assisted weighted model is applied to the above oscillators. The improved out-of-sample forecasting results of the proposed modeling strategy compared with the literature are comprehensively analyzed. The proposed models corresponding to the optimal weights result in the least mean square error (MSE) for all the system states. Further, the MSE for the proposed model is less in most of the oscillators compared with the one reported in the literature. The proposed prediction model’s out-of-sample forecasting plots show the best tracking ability to approximate future state values.
EN
For proper operation, diagnostics or control, it is required to know the parameters of the supercapacitor replacement model (relationship between current and voltage at the terminals). The paper describe the bahavior of the eletrical circuit (RC) containing the supercapacitor were used the fractional derivatives of Caputo definiton and Conformable Fractional Derivative definition. Verification of the correctness of the suggested electrical circuit models was carried out a series of measurements of the system response to the given control signal. The measurement data were compared by fractionalorder derivatives: classical case, Caputo definition and CFD definition. Conducting a series of experiments with charging a supercapacitor in an RC circuit, constant control voltage from 2 V to 5 V with an exchanged external resistor, it was shown that none of the three mathematical models reflects the real behavior of the supercapacitor. It has been shown that the behavior of supercapacitor requires the use of different mathematical than fractional derivatives.
EN
In this paper, a stability analysis of interconnected discrete-time fractional-order (FO) linear time-invariant (LTI) state-space systems is presented. A new system is formed by interconnecting given FO systems using cascade, feedback, parallel interconnections. The stability requirement for such a system is that all zeros of a non-polynomial characteristic equation must be within the unit circle on the complex z-plane. The obtained theoretical results lead to a numerical test for stability evaluation of interconnected FO systems. It is based on modern root-finding techniques on the complex plane employing triangulation of the unit circle and Cauchy’s argument principle. The developed numerical test is simple, intuitive and can be applied to a variety of systems. Furthermore, because it evaluates the function related to the characteristic equation on the complex plane, it does not require computation of state-matrix eigenvalues. The obtained numerical results confirm the efficiency of the developed test for the stability analysis of interconnected discrete-time FO LTI state-space systems.
EN
We introduce a novel fractional order adaptive control design based on the tube model reference adaptive control (TMRAC) scheme for a class of fractional order linear systems. By considering an adaptive state feedback control configuration, the main idea is to replace the classical reference model with a single predetermined trajectory by a fractional order performance tube guidance model allowing a set of admissible trajectories. Besides, an optimization problem is formulated to compute an on-line correction control signal within specified bounds in order to update the system performance while minimizing a control cost criterion. The asymptotic stability of the closed loop fractional order control system is demonstrated using an extension of the Lyapunov direct method. The dynamical performance of the fractional order tube model reference adaptive control (FOTMRAC) is compared with the standard fractional order model reference adaptive control (FOMRAC) strategy, and the simulation results show the effectiveness of the proposed control method.
EN
This paper presents the fractional electrical circuit in the transient state described by the fractional-order state-space equations. General solutions to the fractional state-space equations containing two types of definitions of fractional derivative: Caputo definition and the conformable fractional derivative definition are given the solutions in the case of: 1) control in the form of sine function at zero initial states 2) control in the form of cosine function at zero initial states 3) control in the form of the sine function with phase shift at zero initial states. The solutions are shown for capacitor voltages for fractional derivative orders of 0.7; 0.8; 1.0. The results were compared using graphs.
EN
The aim of this article is to introduce the reproducing kernel algorithm for obtaining the numerical solutions of fractional order systems of Dirichlet function types. The algorithm provide appropriate representation of the solutions in infinite series formula with accurately computable structures. By interrupting the n-term of exact solutions, numerical solutions of linear and nonlinear time-fractional equations of homogeneous and nonhomogeneous function type are studied from mathematical viewpoint. Convergence analysis, error estimations, and error bounds for the present algorithm are also discussed. The dynamical properties of these numerical solutions are discussed and the profiles of several representative numerical solutions are illustrated. Finally, the utilized results show that the present algorithm and simulated annealing provide a good scheduling methodology to such systems compared with other numerical methods.
EN
An analysis of a given electrical circuit using a fractional derivative. The statespace equation was developed. The dynamics of tensions described by Kirchhoff’s laws equations. The paper used the definition of the integral derivative Caputo and CDF conformable fractional definition. An electrical circuit solution using Caputo and CDF definitions for rectangular with zero initial conditions was developed. The results obtained using the Caputo and CDF definitions were compared. The solutions are shown for capacitor voltages, for fractional derivative orders of 0.6, 0.8, 1. The results were compared using graphs.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.