Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  fosforek indu
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Purpose: The article proposes a methodology for determining the chemical quality criterion of porous layers synthesized on the surface of semiconductors, based on taking into account the chemical parameters of the surface that can affect the properties of nanostructures. Design/methodology/approach: The chemical quality criterion was evaluated in terms of stoichiometry, stability of structures over time, uniformity of distribution over the surface, and the presence of an oxide phase. As an example, a calculation is demonstrated for the por-InP/InP structure synthesized on a mono-InP surface. The results of calculating the chemical quality criterion were evaluated using the Harrington scale to rank samples by quality level. Findings: A chemical criterion for the quality of porous layers synthesized on the surface of semiconductors has been developed. This criterion contains a set of indicators sufficient for a comprehensive assessment of the surface condition and is universal in nature. The studies carried out make it possible to reasonably approach the determination of the modes of electrochemical processing of semiconductors and open up new perspectives in the construction of a model of self-organization of a porous structure. Research limitations/implications: The chemical quality criterion does not allow evaluating the obtained nanostructures in terms of geometric parameters. Therefore, in the future, there is a need to develop a morphological quality criterion and determine a methodology for assessing a generalized quality criterion for nanostructures synthesized on the surface of semiconductors, which may include economic, environmental, technological indicators, and the like. Practical implications: Study results are expedient from a practical point of view, since they make it possible to reasonably approach the determination of the modes of electrochemical processing of semiconductors, synthesize nanostructures with predetermined properties, and create standard samples of nanomaterial composition. Originality/value: Methodology for assessing the quality of porous semiconductors by a chemical criterion has been applied for the first time in engineering science. The article will be useful to engineers, who are engaged in the synthesis of nanostructures, researchers and scientists, as well as specialists in nanometrology.
EN
Purpose: f this paper is to is to establish the patterns of oxide formation on the surface of indium phosphide during electrochemical etching of mono-InP. Design/methodology/approach: A porous surface was formed with the anode electrolytic etching. Morphology of the surface was studied with the help of scanning electron microscope JSM-6490. The analysis of chemical composition of porous surface of samples was also performed. Findings: It was shown that during the electrochemical etching of indium phosphide, oxide films and crystallites form on the surface. It has been established that crystalline oxides are formed mainly on the surface of n-type indium phosphide. Continuous oxide films are predominantly formed on the surface of p-InP. Research limitations/implications: The research was carried out for indium phosphide samples synthesized in the solution of hydrofluoric acid, though, carrying out of similar experiments for crystalline oxides on the surface of porous indium phosphide obtained in other conditions, is necessary. Practical implications: The study of oxide crystals on the surface of porous indium phosphide has great practical importance since it is the reproducibility of experimental results that is the main problem of modern materials science, the more nanoengineering. Oxides can significantly affect the properties of materials. On the one hand, oxides significantly affect the recombination properties of materials, this can impair the operation of semiconductor devices. On the other hand, oxide films can serve as a passivating coating for the surface of a porous semiconductor. Such an oxide property will be useful for the practical application of nanostructured indium phosphide. Therefore, questions of the conditions for the formation of semiconductor intrinsic oxides, their structure, and chemical composition, and also the effect of oxides on the physical and technical characteristics of materials are important. Originality/value: The patterns of oxide formation on the surface of indium phosphide during electrochemical etching are investigated in this work. It is shown for the first time that the structure of an oxide depends on the orientation of the surface of the semiconductor. It was shown that continuous oxide films are formed on the surface of p-InP, and oxide crystalline clusters are formed on the surface of n-InP.
PL
W lym artykule przedstawiono projekt dwóch fotonicznych układów scalonych, które mogą zostać wykorzystane w systemie odczytu danych z multipleksacją w dziedzinie czasu. Pierwszym jest serializator optyczny zintegrowany z modulatorami elektrooptycznymi oraz wzmacniaczami półprzewodnikowymi, operujący na pojedynczej długości fali. Drugi korzysta z metody rnultipleksacji w dziedzinie długości fali i wykorzystuje multipleksery AWG, modulatory elektrooptyczne i wzmacniacze półprzewodnikowe.
EN
Two photonic integrated circuits which can be used in a data read-out system are proposed and designed. The designs are developed for use in a neutrino detector but the principle is applicable to a wider range of readout systems. The first one is an optical serializer integrated with electro-optical modulators and semiconductor optical amplifiers and operates at a single wavelength The second one employs a wavelength-division-multiplexing scheme and utilizes arrayed waveguide gratings, electro-optical modulators and semiconductor optical amplifiers.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.