An advanced milling machine multi-sensor measurement system as a condition monitoring tool was presented. It was assumed that the data collected from the 3-axis force and torque sensor can be used as a new approach and an alternative to the typical vibration signal based health monitoring and remaining useful life prediction (RUL), when integrated with machine learning techniques that are regarded as a powerful solution. Measurement system integration with the proposed signal processing method based on decision trees with different types and levels of wavelets for the cutter reliability decision-making process was presented together with proving their ability to trace the tool condition accurately. Prediction errors achieved with the use of different signal sources and data processing methods were presented and compared.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.