Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  fluorophores
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The civilization diseases of the 21st century are non-infectious disorders, affecting a large part of modern society. They are associated with the significant development of industry and technology, and hence with environmental pollution and an unhealthy lifestyle. These factors have led to the development of many civilization diseases, which currently include: cardiovascular diseases, respiratory diseases, diabetes, obesity, malignant tumors, gastrointestinal diseases, mental disorders and allergic diseases. The development of technologies, including modern therapies and new drugs, resulted in increase in life expectancy. This creates a global problem of an aging population with an increasing number of diseases of the old age, i.e. dementias. In addition, sedentary lifestyles and changing diets are the reasons why more and more people develop metabolic diseases, as well as neurological and cognitive disorders characterized by progressive damage to nerve cells and dementia. Currently, problem on a global scale is also the growing resistance to existing antimicrobial drugs. Therefore, the scientists face many challenges related to searching for the causes of these diseases, their diagnosis and treatment. Scientific research conducted at the Department of Biomedical Chemistry at the Faculty of Chemistry of the University of Gdańsk is part of this research trend. In this publication, we discuss various research topics with the long-term aim of solving the problems associated with the diseases mentioned above. The following chapters are dedicated to (i) looking for new effective fluorophores with diagnostic and anti-cancer activity; (ii) designing of new compounds with antibacterial and antiviral activity and their synthesis; (iii) investigating the mechanisms of amyloid deposit formation by human cystatin C and possibilities of inhibition of this process; (iv) designing and studies of compounds activating the proteasome with the potential to suppress the development of neurodegenerative diseases; (v) designing peptide fibrils and hydrogels as drug carriers; (vi) searching for peptide inhibitors of immune checkpoint as potential drugs for immunotherapy; (vii) studying the mechanism of action of selected herpesviruses by determining the structure of viral proteins and (viii) studying the composition of natural glycans and glycoconjugates in order to better understand the mechanisms of interaction of bacteria with the environment or with the host.
2
Content available remote Quantum dots and their immunochemical applications
EN
Quantum dots (QDs) are nanometre size semiconductor crystals which possess unique physical and chemical properties. In recent years they were widely used as signal enhancers in biological analysis, mainly because of their high quantum yield, photostability and long-lasting photoluminescence. Compared to common organic fluorophores QDs exhibit wider absorption spectra (QDs absorb photons when excitation energy exceeds the bandgap), narrow emission wavelengths and high Stoke’s shift which allow usage of several different-coloured QDs in single multiplex assays. QDs’ synthesis can be conducted by top-down or bottomup approach. Both methods of synthesis may lead to surface imperfections which may negatively affect QDs’ optical properties. To avoid this problem surface passivation is required. The most widely used passivation method is to cover the QD’s core with material having larger band gap (ZnS). QDs can be widely used in different applications due to the ease of surface functionalization by means of organic and inorganic molecules (polymers, dendrimers, proteins, antibodies and etc.) by many different approaches like ligand-exchange, silanization, amphiphilic combination and other mechanisms. Functionalized QDs have been used for various purposes in in-vitro and in-vivo imaging, drug delivery, therapeutics and other. However this review is mainly focused on immunochemical applications of QDs such as immunohistochemistry, FLISA, FRET, immunosensors etc. QD-based immunological assays are being used for detection of pathogens, toxins, proteins, metal ions (Hg2+) and allergens. Based on growing rate of QDs’ applications it can be concluded that in the coming years their number is going to increase.
EN
Fluorescent spectroscopy is an important method in life science which has recently gained popularity. Fluorescent spectroscopy is widely used for example by the researches in the variety of biological structures, intercellular interactions, various kinds of biomolecules and also for understanding of the biochemical processes which take place inside the living organisms. For this purpose, an application of fluorescent sensors and searching for more efficient and more sensitive fluorophore for illustrating, labelling and detection, have become a developing trend in biochemistry, medicine, biology and also in many other chemistry researches. Nowadays, issues which are connected to fluorescence are mainly applied to the newest achievements in the field of fluorescent methods and measurement techniques and also to the development and applications of fluorescent probes, what is closely showed up in this article.
4
Content available remote ZnS Cu-doped quantum dots
EN
The paper presents a survey of literature on the structure and optical properties of ZnS and copper ion-doped ZnS quantum dots. The effect of other metal dopants on the spectral properties of ZnS:Cu quantum dots was also considered. The influence of such parameters as dopant concentration, temperature of the synthesis and compounds which form or modify the additional layer on dots on spectral properties of the quantum dots was described. Examples of application of ZnS:Cu quantum dots are also given.
PL
Fluorescencja znajduje obecnie ogromne zastosowanie w obrazowaniu komórek i badaniu dynamiki procesów komórkowych. Wynika to z dostępności różnorodnych fluoroforów oraz białek fluorescencyjnych, a także z wykorzystania w badaniach licznych technik fluorescencyjnych: FCS, FRET, FLIM, TIRF, STED oraz mikroskopii korelacyjnej, łączącej techniki fluorescencyjne i elektronowe.
EN
Fluorescence is widely applied in cell imaging and in studying cellular dynamics. Its popularity stems from availability of numerous fluorophores and fluorescent proteins as well as development of fluorescence techniques like FCS, FRET, FLIM, TIRF, STED, and correlative microscopy that combines the fluorescence and electron microscopy.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.