The presence of natural gas in the pore space of reservoir rocks results in a significant decrease in P-wave velocity. Even low gas saturation can generate seismic anomalies (DHI) and false image of gas accumulation of economic importance. This article presents an attempt to evaluate gas saturation from 2D seismic section in the Miocene sandstone strata in the south-eastern part of the Carpathian Foredeep. The ESTYMACJA program and the Biot–Gassmann model were used to study the dependence between elastic parameters and saturating fluids (water and gas) recorded in wells. Series of calculations was carried out using a method of fluid substitution for various gas saturation. The applicability of seismic data for evaluating gas saturation of reservoir beds was assessed with the use of 1D modelling (synthetic seismograms) and 2D modelling (theoretical seismic section) calculated for different gas saturation. The proposed methodology can be used to identify low and high gas-saturated zones and contour the reservoir.
The Main Dolomite is one of the most prospective hydrocarbon reservoir formations in Poland. The goal was to determine the Main Dolomite zonation in selected part of carbonate platform sedimentation area and also to analyze the influence of cementation factor on water saturation by well logging and seismic data integration. Well logging interpretation quantitatively characterized petrophysical parameters. Seismic inversion presented the distribution of the parameters at vertical and horizontal scales. Basic statistical calculations of petrophysical parameters, 2D crossplots and seismic inversion were made. The central part of the Main Dolomite interval indicated the best reservoir properties. High porosity values and low P-wave velocity, low bulk density and low water saturation values were observed in the analyzed zone. Mudlogging confirmed the occurrence of gas. Determination of hydrocarbon saturation in carbonates is a challenge for well logging interpretation and geophysical interpretation. The cementation factor is one of the main coefficients in petrophysics which strongly affect water saturation. Adopting the wrong value of this parameter causes serious error in the coefficient of the water saturation value. In the paper, water saturation was modeled using the Borai equation and Shell formula. By using the computed water saturation and fluid substitution method theoretical velocities of P-waves and S-waves (also P-wave/S-wave velocity ratio) were calculated. Results of the comprehensive interpretation of logs are the basis for lithology determination but P-wave and S-wave velocity can also serve as a source information about lithology. In reservoir rocks VP/VS ratio may also work as a confirmation of gas saturation.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.