Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  fluid–structure interaction
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The role of regional hemodynamics in intracranial aneurysms (IAs) hemodynamics and rupture risk has been widely discussed based on numerical models over the past decades. The aim of this paper is to investigate hemodynamics and rupture risk with a complicated IA model. Fluid-structure interaction (FSI) simulations were performed to quantify the hemodynamic characteristics of the established IA models. Hemodynamic parameters, including wall shear stress (WSS), flow velocity, and flow pattern, were calculated and analyzed. In this paper, the risk assessment of intracranial aneurysms focuses on the mechanical properties of blood flow and blood vessel walls. Vortex flow and concentrated impact field during blood flow play a decisive role in the rupture and development of aneurysms. The uneven distribution of wall shear stress on the vessel wall has a great influence on growth and rupture. By observing the simulation results of rigid walls, risks can be predicted efficiently and accurately. This paper focuses on the relationship between hemodynamics and rupture risk with a double intracranial aneurysms disease mode and provides a new perspective on the treatment of intracranial aneurysms.
EN
The design of lifting blade shapes is a key engineering application, especially in domains such as those of marine propellers, hydrofoils, and tidal energy converters. In particular, the excitation frequency must be different from that of the structure to avoid resonance. The natural frequency in the cases where the fluid–structure interaction (FSI) is considerably different if considering the coupling added mass (AM) of the water. In this study, vibration experiments were performed using a real propeller in air and water. The modal parameters, natural frequencies, and mode shapes were determined. Validations were performed using 3D solid and acoustic elements in a direct coupling finite element format. The modal results and AM ratios were in agreement with the experimental results. Convenient application and high efficiency are basic requirements for an engineering application. Therefore, an empirical formula was established for the first-order FSI natural frequency to enable rapid estimation, thereby satisfying this requirement.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.