Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  flexible manipulator
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This paper presents an innovative development of a flying robot or an aerial robot, with a flexible manipulator, called the Dexterous Aerial Robotic System (DFTS), for aerial manipulations, especially for inspections and reparations of various structures such as wind turbines, power lines and open gas pipelines, decorations and painting of high industrial chimneys and walls of high buildings, as well as transport and delivery of courier shipments, relocation and manipulation of assemblies and units in inaccessible or dangerous environments. The proposed DFTS consists of two independent but interconnected systems or functional units, which have two main separate functions respectively, including a basic carrying function, and a precise positioning and stabilization function. The system with a basic carrying function is actually the main flying system, the un-manned aerial vehicle (UAV); it is remotely controlled and piloted. Meanwhile, the aerial manipulation platform, called the vertical take-off and landing platform VTOL, which is an active flying platform with 6 degrees of freedom (DOF) is used for positioning and stabilization; and it is attached to the UAV via the soft link. With the use of a long soft link, the problems which are caused by the air turbulent flows generated by the UAV are minimized, and the aerial manipulations of objects are safely controlled and operated. The VTOL which is equipped with a grasping mechanism was successfully developed, prototyped and tested. The experimental results showed that, the developed VTOL can self-stabilize with the inclination angle of being up to 8 degrees.
EN
This paper aims at planning an optimal point to point path for a flexible manipulator under large deformation. For this purpose, the researchers use a direct method and meta-heuristic optimization process. In this paper, the maximum load carried by the manipulator and the minimum transmission time are taken as objective functions of the optimization process to get optimal path profiles. Kinematic constraints, the maximum velocity and acceleration, the dynamic constraint of the maximum torque applied to the arms and also the constraint of final point accuracy are discussed. For the optimization process, the Harmony Search (HS) method is used. To evaluate the effectiveness of the approach proposed, simulation studies are reviewed by considering a two-link flexible manipulator with the fixed base. The findings indicate that the proposed method is in power of dealing with nonlinear dynamics of the system. Furthermore, the results obtained by rigid, small and large deformation models are compared with each other.
EN
This paper presents the design of a Fuzzy Logic Controller (FLC) whose parameters are optimized by using Genetic Algorithm (GA) and Bacteria Foraging Optimization (BFO) for tip position control of a single link flexible manipulator. The proposed FLC is designed by minimizing the fitness function, which is defined as a function of tip position error, through GA and BFO optimization algorithms achieving perfect tip position tracking of the single link flexible manipulator. Then the tip position responses obtained by using both the above controllers are compared to suggest the best controller for the tip position tracking.
EN
Controlling multi-link flexible robots is very difficult compared rigid ones due to inter-link coupling, nonlinear dynamics, distributed link flexure and under-actuation. Hence, while designing controllers for such systems the controllers should be equipped with optimal gain parameters. Evolutionary Computing (EC) approaches such as Genetic Algorithm (GA), Bacteria Foraging Optimization (BFO) are popular in achieving global parameter optimizations. In this paper we exploit these EC techniques in achieving optimal PD controller for controlling the tip position of a two-link flexible robot. Performance analysis of the EC tuned PD controllers applied to a two-link flexible robot system has been discussed with number of simulation results.
EN
This paper presents a new control strategy for the position and force control of flexible manipulators. The governing equation of motion of a two-link flexible manipulator which features piezoceramic actuators bonded on each flexible link is derived via Hamilton?s principle. The control torques of the motors to command desired position and force are determined by a sliding mode controller (SMC) on the basis of the rigid-mode dynamics. In the controller formulation, the sliding mode controller with perturbation estimation (SMCPE) is adopted to determine appropriate control gains. The SMCPE is then incorporated with the fuzzy technique to mitigate inherent chattering problem while maintaining the robust stability of the system. A set of fuzzy parameters and control rules are obtained from estimated perturbation. During the commanded motion, undesirable oscillation is actively suppressed by applying feedback control voltages to the piezoceramic actuators. These feedback voltages are also determined by the SMCPE. Consequently, accurate position and force control of a two-link flexible manipulator are achieved.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.