Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  flanging
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The selected issue of flange cracking in the radial extrusion process of hollow parts has been discussed in this paper. The researches were carried out based on numerical calculations in the Deform 3D software and experimental tests, which were carried out using pipe billets made of aluminum alloy EN AW 6063. A new methodology has been developed that allows to determine the place and approximate moment of material cohesion loss. This is determined from the results of the FEM calculation only, and does not require calibration tests. The method is based on a detailed analysis of the state of stress, state of strain in the forging, and is focused on identifying zones with an uneven distribution of the mentioned parameters. Determination of characteristic zones with a zero increase in the strain effective value makes it possible to determine, with a high approximation, the maximum (due to the phenomenon of cracking) diameter of the flange. The results of numerical calculations showed a high agreement with the results of experimental tests, in which the maximum diameter of the flange was determined.
EN
The paper presents a discussion on the occurrence of defects in the circumferential flange of steel plate. The numerous flange face defects have been analysed. The types of defects have been selected and categorized using an experimental planning procedure involving 600 samples for 24 different process variants, considering variables such as material, hole diameter, tool size and tool position. The analysis of experimental results enabled to determine of the optimal values of process parameters to minimize the occurrence of defects. Furthermore, the influence of individual parameters on the quality of the flange surface has been carried out to obtain the process parameters’ impact using statistical hypotheses. As a result, it was possible to develop rules which will be helpful in the design process, especially important when changing the material to be processed.
EN
This article presents the results of computer simulations used to investigate the forming of a hollow coldworked forging with an outer flange. Numerical simulations were performed in Deform 2D/3D using a calculation module for axial-symmetric cases. A ϕ57×12.5 mm tube-shaped billet from 42CrMo4 grade steel was used. The forming process involved two and three stages, consisting of extrusion the shaft portion and forging the flange. The objective of this research was to determine the accuracy of the forming process used to produce the hollow part. This technology was analyzed using the effective strain distributions, the Cockcroft-Latham fracture criterion values, and the forming force progression. The results showed that it was possible to use this three-stage process to forge elements from a tube-shaped billet.
EN
This paper presents the results of a numerical analysis of a cold forging process for a hollow flanged part. The analysis was performed using Deform 2D/3D. 42CrMo4 steel tubes were used as the billet material, and their material model in the annealed state was described by a constitutive equation. The forming process was performed in six stages with the use of methods such as extrusion with a movable sleeve, open-die extrusion, and upsetting. The objective of the study was to determine whether the proposed forging technique could be used to produce hollow parts with flanges. The determination was made based on the analysis of product geometry quality and process parameters, including the Cockcroft-Latham ductile fracture criterion and forming forces.
EN
The paper presents an innovative method of metal forming of hollow flanged elements. In this process, flanges are formed using a movable sleeve, which moves in the opposite direction to the punch. The movement of the sleeve causes a closed impression to open, due to which the flange is also formed in a semi-free impression. The tube billets were made of the 42CrMo4 grade steel deformed under the cold metal forming conditions. The calculations were conducted using the finite elements method in Deform-2D/3D. Various technological parameters of the process were analysed, among others the diameter of the flange and the initial height of the impression of the movable sleeve. On the basis of the obtained results, the limiting phenomena of the process were determined and the influence of the analysed technological parameters on these phenomena were presented.
EN
This paper presents an innovative process of metal forming of a hollow shaft with a flange of triangular rosette shape. The analyzed part is used in helicopters as drive transmission shaft. This product has to be a monolith; hence, it is inadmissible to connect the flange with a tube. Due to the lack of alternative methods of this part manufacturing, shafts are made by means of machining from full bar, which generates material loss exceeding 90%. The proposed method of the flange metal forming considerably lowers material and labor consumption and guarantees better resistance properties in comparison with shafts made by means of machining. The presented way is based on billet's end expanding freely protruding from a split die. Numerical analysis of the forming process of a shaft from titanium alloy Ti6Al4V was conducted in software DEFORM-3D. On the basis of the analysis results tools were designed for the process experimental verification. Stand tests were made on a three-slide forging press. The results of theoretical and experimental research are convergent and confirm the rightness of the proposed method.
EN
The paper presents a new process for flanging hollow parts. This process is performed using a specially designed set of tools with movable sleeves. The principle of operation of the tool set is described and examples of the numerical analysis results are given. The FEM simulation was performed on the assumption that the hot-formed hollow workpiece (tube) is made of AlMgSi aluminum alloy. The obtained FEM results show changes in the workpiece shape during flanging, variations in the forming force and the damage function distribution computed according to the C-L failure criterion. The theoretical results of the new flanging method provided basis for experimental tests.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.