Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  fission converter
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The Boron-Neutron Capture Therapy (BNCT) is an experimental radiotherapy technique used to treat the most aggressive types of brain tumors that cannot be surgically removed from the human body. To date, clinical trials of BNCT have been initiated at only a handful of reactors around the world, but advanced studies on BNCT are still being carried out in numerous research centers where the suitable or convertible reactors are available. Construction of BNCT facilities is justified only at some existing reactors. Others can possibly be adapted for BNCT by using fission converters to modify the energy spectrum of the primary neutron beam, which makes it useful for treatment purposes. The BNCT converter, designed for use in the MARIA research reactor at the National Centre for Nuclear Research [W1] (NCBJ) in Świerk near Warsaw, Poland, consists of 99 fuel rods (containing low-enriched uranium) inside of the aluminum box. Since its installation affects the core layout and possibly may affect the normal operating regime of the reactor, additional safety analyses must be performed to prove the existence of sufficient safety margins. In this study modern Computational Fluid Dynamics (CFD) techniques have been applied to assess the maximum temperature of the rod wall surfaces, the temperature difference between the inlet and outlet of the converter channel, as well as the maximum and average velocity of the fluid and to compare them with the results presented in the reference analytical study.
EN
The paper presents results of the numerical modelling of the fission-converter-based epithermal neutron source designed for a BNCT (Boron Neutron Capture Therapy) facility to be located at the Polish research nuclear reactor MARIA at Świerk. The unique design of the fission converter has been proposed due to a specific geometrical surrounding of the reactor. The filter/moderator arrangement has been optimised in order to moderate fission neutrons to epithermal energies and to get rid of both fast neutrons and photons from the therapeutic beam. The selected filter/moderator set-up ensures both the high epithermal neutron flux and the suitably low level of beam contamination. The elimination of photons originated in the reactor core is an exceptional advantage of the proposed design. It brings one order of magnitude lower gamma radiation dose than the permissible dose in such a type of therapeutic facility is required. The MCNP and FLUKA codes have been used for the computations.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.