Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  firefighter helmet
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The aim of the study was to determinate the fracture mechanism of firefighters' helmets caused by the impact load in simulated operational conditions. Moreover the aim of the study was to assess the reliability of the personal protective equipment. Tests were conducted with the use of the drop tower system. On each type of helmet 5 impact tests were performed. The active force corresponding to impact energy of 60 J and the passive force (force in the place of the neck spine) was registered. Based on the results, it can be statement that helmets' structure influences their reliability and values of the active and passive forces. Additionally, the majority of tested helmets exceeded the acceptable threshold values of passive force.
PL
Celem badań było określenie mechanizmu niszczenia hełmów strażackich spowodowanego obciążeniem udarowym w symulowanych warunkach narażeni operacyjnych, a także ocena niezawodności sprzętu ochrony indywidualnej. Testy przeprowadzono z wykorzystaniem młota udarowego opadowego. Na każdym typie hełmu przeprowadzono po 5 testów udarowych. Rejestrowano siłę czynną odpowiadająca energii uderzenia 60 J oraz siłę bierną (siłę w miejscu kręgosłupa szyjnego). Na podstawie wyników można stwierdzić, że konstrukcja hełmów i ich stan wpływają na ich niezawodność i wartości sił czynnych i biernych. W przypadku większości badanych hełmów przekroczono dopuszczalne wartości progowe sił biernych.
PL
Obecnie w działania ratowniczych funkcjonariusze Państwowej Straży Pożarnej wykorzystują hełmy strażackie chroniące głowę ratownika. W większości przypadków wykorzystywane są tzw. hełmy typu B wg normy technicznej PN EN 433. Osłony twarzy hełmów strażackich wykonywane są zazwyczaj z przezroczystego poliwęglanu. Na powierzchnię osłony często nanoszone są jednowarstwowe powłoki metalizowane, najczęściej wykonywane w technologii PVD. Niekiedy stosowane są powłoki wielowarstwowe także gradientowe. Powierzchnia wizjera może ulegać uszkodzeniom. Uszkodzenia powierzchni ograniczają pole widzenia ratownika wpływają również niekorzystnie na właściwości barierowe powłoki. Jednym z kryteriów użytkowych osłon twarzy i okularów hełmów strażackich jest odporność na zarysowanie. Wykonano badania porównawcze odporności na zarysowanie powierzchni. Próbę przeprowadzono za pomocą diamentowego stożka Rockwella. Wykazano niewielkie różnice w odporności na zarysowanie. Mechanizm niszczenia powierzchni przez zarysowanie badanych osłon był odmienny. Najwyższy opór przeciwko wgłębnikowi uzyskano w przypadku powierzchni osłony hełmu Kontekst. Najmniejsze uszkodzenie powierzchni wykazano dla hełmu z osłona twarzy pokrytą powłoką metaliczną - Gallet. Osłony twarzy hełmów bez powłoki cechowały się większymi uszkodzeniami. Największe uszkodzenie uzyskano dla osłony hełmy Kontekst.
EN
Nowadays, in rescue operations firefighters of the State Fire Service use firefighting helmets which protect their head. Type B helmets in accordance with PN EN 433 technical norm are most often used. The face shields of firefighting helmets are usually made of transparent polycarbonate. One layer of metalized coatings, usually made in PVD technology are often applied on the shield surface. Sometimes multilayer and gradient coatings are also applied. The surface of a visor may get damaged. Surface damages limit the field of rescuer view, and also adversely influence on barrier properties of the shield. One of the utility criterion for face shields and glasses of firefighting helmets is scratch resistance. Comparative studies on scratch resistance of surface were performed. The test was conducted with the use of Rockwell diamond cone. Small differences in scratch resistance were shown. The mechanizm of surface degradation due to scratch of studied shields were varied. The highest resistance against the indenter was obtained in case of the shield surface of the Kontekst helmet. The lowest surface degradation was observed for the helmet with the shield face covered by metalized coating - Gallet. The face shields of helmets without coating were characterized by higher damages. The highest damage was obtained in case of the Kontekst helmet.
PL
Cel: Celem niniejszego artykułu jest analiza porównawcza właściwości mechanicznych pianek polimerowych stosowanych jako absorbery energii uderzenia w krajowej produkcji hełmów strażackich. Tym samym celem artykułu jest ocena właściwości nowych materiałów pod kątem bezpieczeństwa oraz komfortu pracy użytkowników hełmów. Metody: W badaniach wykorzystano wkład z polistyrenu ekspandowanego oraz absorbery z poliuretanu pochodzące z krajowych hełmów strażackich produkowanych w różnych latach. Przeprowadzono próby wytrzymałości na ściskanie w warunkach obciążenia quasi-statycznego oraz w zakresie odkształceń sprężystych. Warunki te odpowiadają anormalnym oraz normalnym warunkom eksploatacji materiałów absorpcyjnych wykorzystywanych w konstrukcji hełmów strażackich. Komfort użytkowania oceniono na podstawie wartości modułu Younga. Wyniki: Wyniki badań wytrzymałości na ściskanie materiałów absorpcyjnych wskazują na znaczące różnice między analizowanymi absorberami na poziomie obciążeń występujących zarówno w normalnych warunkach eksploatacji, jak i w warunkach nadzwyczajnych. Pianki z polistyrenu ekspandowanego oraz z hełmu AK-06 z 2012 roku charakteryzują się dobrą wytrzymałością, zdolnością do absorpcji energii oraz dużą sztywnością. Absorbery z hełmu AK-06 z 2007 roku cechują się najgorszymi spośród badanych materiałów właściwościami konstrukcyjnymi. Materiał z 2015 roku charakteryzuje się stosunkowo dobrą wytrzymałością, zdolnością do absorpcji energii oraz niedużą sztywnością. Wnioski: W budowie hełmów strażackich wykorzystywane są różne materiały absorpcyjne, które charakteryzują się niejednakowymi właściwościami mechanicznymi. Wybór optymalnego rozwiązania możliwy jest dzięki badaniom laboratoryjnym. W konstrukcji badanych hełmów materiały absorpcyjne z polistyrenu ekspandowanego zastąpiono poliuretanem. Pianki poliuretanowe stosowane w hełmach produkowanych w 2007 roku charakteryzują się mniejszą sztywnością, lecz gorszymi właściwościami niż wkładki z polistyrenu ekspandowanego. Właściwości tych materiałów poprawiono, uzyskano to jednak dzięki znaczącemu zwiększeniu sztywności w zakresie odkształceń sprężystych. Wydaje się, że spośród badanych absorberów optymalnymi właściwościami cechuje się najnowszy materiał, stosowany w hełmach Calisia Vulcan CV 102 z 2015 roku.
EN
Objective: The objective of the study was a comparative analysis of the mechanical properties of polymer foams used as impact energy absorbers, a component of firefighter helmets manufactured in Poland. The study aimed at evaluating the influence of the properties of new materials on the working safety and comfort of helmet users. Methods: The study utilised an expanded polystyrene insert and polyutherane absorbers obtained from Polish firefighter helmets that were manufactured in various years. Compressive strength tests under quasi-static load and at dynamic conditions with regard to elastic deformations were carried out. They reflected both abnormal and normal operational loads. Comfort of use was evaluated indirectly based on Young’s modulus value.Results: Compressive strength test results for absorptive materials indicated significant differences between studied absorbers both at normal load conditions and in extraordinary situations. Expanded polystyrene foams and foam from AK-06 helmet from 2012 demonstrated a good strength, high energy absorption capacity and high stiffness. The foam from AK-06 helmet from 2007 was observed to have the worst mechanical properties among the studied materials. The material from 2015 indicated a relatively good strength, energy absorption properties and moderate stiffness. Conclusions: A variety of absorptive materials with different mechanical properties are used in the structure of firefighter helmets. Laboratory studies allow the selection of the most optimum solution. In the studied firefighter helmets, expanded polystyrene absorptive materials had been replaced by polyurethane. The polyurethane foams applied in helmets manufactured in 2007 were characterized by lower stiffness and inferior properties as compared to inserts made of expanded polystyrene. Later the properties of materials have been improved. However, it was achieved through a significant increase in stiffness with regard to elastic deformations. It seems that the optimum properties among the studied absorbers were achieved by the newest material, which was used in Calisia Vulcan CV 102 helmets from 2015.
EN
The paper presents a firefighter helmet with integrated thermal camera system, OLED display, sensors for monitoring the vital signs of a firefighter-rescuer and communication system for transmitting such data as live thermal video streaming, body temperature, heart rate and ambient temperature. The developed helmet, apart from its typical function as personal protection device against threats associated with firefighter’s work, also provides enhanced capability of carrying out rescue missions in low-visibility scenarios, thus increasing the safety of a firefighter itself.
PL
Warunki działań ratowniczo-gaśniczych, w szczególności podczas pożarów wewnętrznych, charakteryzują licznymi zagrożeniami. Główne zagrożenia pochodzą od czynników cieplnych i mechanicznych. Na zagrożenia mechaniczne w szczególności narażona jest głowa strażaka, chroniona przez hełm strażacki. Zadaniem hełmu jest absorbowanie części energii mechanicznej uderzenia działającej w kierunku ratownika. Celem badań było określenie wartości centralnych sił czynnych odpowiadających energii uderzenia 60 J oraz stopnia redystrybucji sił w kierunku kręgosłupa szyjnego. Badania przeprowadzono na wybranych hełmach w warunkach skojarzonych narażeń cieplnych i mechanicznych (tak jak ma to miejsce w warunkach operacyjnych). W badaniach wykazano, że energia kinetyczna uderzenia w hełm osadzony na głowie jest zamieniana głównie na energię odkształcenia (deformacji) skorupy, wkładki amortyzującej, jeżeli taka wystęPUje, i więźby. Proces ten zależy od konstrukcji hełmów. Temperatura narażenia termicznego działającego na hełm ma kluczowe znaczenie dla przejmowania i przenoszenia energii uderzenia centralnego. Badania przeprowadzono w ramach projektu badawczo -rozwojowego Nr O ROB/ 0011/03/001 „Opracowanie innowacyjnego systemu stanowisk do badań ochron osobistych”.
EN
Conditions of firefighting–rescue actions, especially during internal fires are characterized by a number of threats. They mainly come from thermal and mechanical factors. Firefighter’s head is mainly exposed to mechanical threats, protected by a firefighter helmet. The helmet absorbs part of mechanical impact energy in the direction of rescuer. The objective of the study was determination of central forces corresponding to impact energy of 60J and degree of redistribution of forces in a direction of cervical spine. The studies were conducted on the selected helmets at conditions of combined thermal and mechanical exposures (as it occurs in operating conditions). The studies have demonstrated that kinetic energy of impact to the helmet placed on the head is mainly exchanged to strain energy (deformation) of shell, protective insert, and if present a cradle. This process depends on the helmet’s construction. Temperature of thermal exposure impacting helmet is crucial for absorbing and transferring energy of the central impact. The studies were conducted as a part of research and development project No. O ROB/ 0011/03/001 „Development of innovative system of research stands for personal protection studies”.
EN
The aim of this study was to test the usefulness of magnetron sputtering technology to produce coatings on selected elements of a firefighter’s helmet to protect against infrared radiation (PN-EN 171 standard). The scope of research includes testing the deposition produced via magnetron sputtering of metallic and ceramic coatings on plastics, which are used to manufacture the components comprising the personal protection equipment used by firefighters. The UV-VIS, NIR used to research the permeation coefficients and reflections for light and infrared light and the emission spectrometry with ICP-AES used for the quantitative analysis of elements in metallic and ceramic coatings. Microstructural and micro-analytical testing of the coatings were performed using scanning electron microscopy (SEM). Measurements of the chemical compositions were conducted using energy-dispersive X-ray spectroscopy (EDS). The hardnesss of the coatings were tested using a indentation method, and the coating thicknesses were tested using a ellipsometry method.
PL
W trakcie pożaru dochodzi do wystąpienia szeregu zagrożeń, w tym termicznych i mechanicznych. Do ochrony przed tymi zagrożeniami służy specjalny sprzęt ochrony indywidualnej. Hełmy strażackie służą do ochrony głowy i karku przed odpadającymi łącznikami i fragmentami konstrukcji oraz uderzeniami w niewidoczne (w warunkach zadymienia) przeszkody. Ponadto, hełmy powinny być odporne na zgniot poprzeczny w warunkach zasypania. Najistotniejszą częścią hełmu i zarazem najbardziej narażoną jest jego skorupa. Wielu strażaków zauważa, że w warunkach działań ratowniczo-gaśniczych, w wyniku oddziaływania gorącego środowiska, właściwości skorupy hełmu zmieniają się i niekiedy dochodzi do jej odkształcenia. Badania zrealizowano na próbkach kompozytu polimerowego, z którego wykonuje się skorupy hełmów strażackich, sposobem wtryskiwania tworzywa do form. Temperatury i czas ekspozycji zostały określone na podstawie warunków ćwiczeń w komorach rozgorzeniowych oraz literatury specjalistycznej.
EN
During fire, there appear a lot of risks, including mechanical and thermal ones. To protect themselves, firefighters use special protection equipment. Helmets protect head and neck form falling debris or hitting invisible (under smoke conditions) obstacles. What is more, helmets should be resistant to lateral deformation in case of strewing. The shell is the most essential and the most exposed to the danger part of a helmet. Numerous firefighters notice that during rescue or firefighting operations, the properties of a helmet shell change due to high temperature and as a result it gets distorted. Research was carried out on samples of polymer composite which is used in production of helmet shells by means of injecting it into molds. Temperatures and the exposure time were specified on the basis of exercise conditions in flash-over chamber and specialist literature.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.