Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 12

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  fire scenario
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W artykule przedstawiono charakterystykę systemów sygnalizacji pożarowej (SSP) w budynkach i obiektach logistycznych oraz integrację tego systemu z innymi instalacjami przeciwpożarowymi i technicznymi w ramach przyjętego scenariusza pożarowego. Przedstawiono modele scenariusza pożarowego z uwzględnieniem eksploatacji SSP, stałych urządzeń gaśniczych (SUG) i innych instalacji technicznych dla nowoczesnych rozwiązań technicznych i różnych wariantów alarmowania.
EN
The article presents the characteristics of fire alarm systems (SSP) in buildings and logistic facilities and integration of this system with other fire and technical installations as part of the adopted fire scenario. The models of the fire scenario were presented, including the operation of SSP, fixed fire extinguishing devices (SUG) and other technical installations for modern technical solutions and various alarm variants.
3
Content available remote Wentylacja pożarowa w budynkach wielokondygnacyjnych
EN
Fires are the most feared hazard in underground mines. The problems associated with under-ground mine fires calls for special techniques and treatments in its prevention and fire fighting. Each mine fire presents unique conditions from the perspective of dealing with it. The purpose of this paper is to present Computational Fluid Dynamics (CFD) simulated fire scenarios on which is tested the brattice barrier method for approaching underground mine fires. With this experimental CFD model we can de-termine the effectiveness of this method. These simulations were performed to determine if we increase the air velocity into the roof with help of brattice barrier, will this remove the smoke and heat upstream of the fire so that firefighters can approach safely and extinguish the fire. We can also observe the explosive range of the particles and gases that travel upstream of the fire and are then forced back into the fire area by this brattice barrier method.
5
Content available Wybrane zasady tworzenia scenariuszy pożarowych
PL
Cel: Celem artykułu jest omówienie wybranych zagadnień związanych z zasadami opracowywania scenariuszy pożarowych. Wprowadzenie: Sposób funkcjonowania urządzeń przeciwpożarowych i urządzeń użytkowych lub technologicznych w budynku w czasie pożaru precyzowany jest w scenariuszach pożarowych. Scenariusze określają algorytmy ich działania, współdziałanie i oddziaływanie na siebie. Uwzględniają również rozwiązania organizacyjne w sytuacji pożaru. Tym samym stanowią one istotny dokument, scalający wymagania w zakresie bezpieczeństwa pożarowego budynków i określający wytyczne wzajemnego powiązania poszczególnych branż instalacyjnych. W artykule omówiono wymaganie formalno-prawne dotyczące scenariusza pożarowego, przedstawiono przykładowe sposoby konstruowania scenariuszy pożarowych, określono zasady współpracy wybranych urządzeń i instalacji w sytuacji pożaru. Metodologia: W artykule wykorzystano głównie metodę obserwacji, pomocniczo oparto się na metodach analizy i krytyki piśmiennictwa. Oparto się na doświadczeniu autorów z zakresu obserwacji procesów projektowania, instalowania i eksploatacji urządzeń ppoż. i instalacji technicznych w budynkach. Analizie poddano dokumenty prawne oraz inne dokumenty opisujące scenariusze pożarowe i zasady współdziałania urządzeń w razie pożaru. Wnioski: Doświadczenia autorów oraz uzyskane wyniki analizy przepisów prawa, dokumentów normatywnych oraz literatury przedmiotu pozwoliły na sformułowanie następujących wniosków: - Scenariusz pożarowy jest dokumentem, który powinien być tworzony na etapie projektu budowlanego przez rzeczoznawcę ds. zabezpieczeń ppoż., uszczegóławiany na etapie projektu wykonawczego i powykonawczego przez projektanta SSP przy współpracy z rzeczoznawcą oraz aktualizowany przy zmianach budowlanych i instalacyjnych w budynku. - Sposób podziału na strefy sterowań powinien uwzględniać zapewnienie bezpieczeństwa pożarowego oraz ograniczoną ingerencję w funkcjonowanie budynku w obszarach niezagrożonych. Należy uwzględnić podział budynku na strefy pożarowe, strefy dymowe, kondygnacje, pomieszczenia wydzielone pożarowo oraz przewidywać skutki rozwoju pożaru w danej przestrzeni i oddziaływanie na przestrzenie sąsiednie. - Sygnałom wejściowym przychodzącym do centrali sygnalizacji pożarowej należy przypisać odpowiednie sterowania, uwzględniające źródło sygnału (czujka, ROP, moduł sterujący) oraz rodzaj alarmu pożarowego (alarm I stopnia, alarm II stopnia). Podczas definiowania sygnałów wejściowych z poszczególnych stref sterowań należy uwzględnić możliwe zachowania ludzi w sytuacji pożaru oraz sposoby pracy instalacji, w szczególności rozwagi wymaga określenie sterowań z ROP-a. - Scenariusz na etapie projektu budowlanego wyznacza cele, które poszczególne branże mają zrealizować na etapie projektu wykonawczego oraz kompiluje w formie matrycy sterowań zaprojektowane przez branżystów instalacje.
EN
Purpose: The aim of the article is to discuss selected issues related to the principles of developing fire scenarios. Introduction: Fire scenarios determine the way of operation of fire-fighting equipment and utility or technology equipment in a building during a fire. They determine algorithms of their functioning, interaction and impact on each other. They also take into account organizational arrangements in a fire situation. Thus, they constitute an important document that integrates the requirements for fire safety of buildings and setting out guidelines of interconnection of individual installation industries. The article discusses formal requirement concerning a fire scenario, example of how to construct fire scenarios were demonstrated, the principles of cooperation of selected devices and systems in the event of a fire were provided. Methodology: In the article a method of observation was mainly used, alternatively methods of analysis and criticism of literature were applied. The authors’ experience in the field of observation of the processes of design, installation and operation of fire and technical installations in buildings was used. Documents of laws and documents describing fire scenarios, as well as rules of interaction of devices in the event of a fire were analyzed. Conclusions: The results of the analysis of the authors’ experiences, laws, normative documents and literature allowed to formulate the following conclusions: - A fire scenario is a document which should be created at the phase of a building project by a fire-prevention expert, elaborated at the phase of an executive and post-executive project by the designer of the fire detection and fire alarm system in cooperation with the expert and updated during construction and installation changes in the building. - The method of dividing into control zones should include ensuring fire safety and limited interference with the functioning of the building in the areas free of fire risk. Dividing a building into fire zones, smoke zones, floors, fire resistant areas and anticipating the effects of a fire over a given area and the impact on the should be taken into consideration. - Input signals incoming to the fire alarm control panel should have appropriate control assigned the, taking into account the source of the signal (detector, manual call point, control module) and the type of the fire alarm (fire alarm level I, fire alarm level II). Defining input signals from each control zone, possible behavior of people in a fire situation and the ways of installation operation should be taken into consideration, in particular, special attention should be paid to defining controls from the manual call point. - At the stage of a construction design, a fire scenario sets goals that individual industries are supposed to realize, at the stage of an executive project a fire scenario compiles the installations in the form of a matrix of controls.
PL
Opracowane przez Szwedzkie Stowarzyszenie Inżynierów Ochrony Przeciwpożarowej (SFPE) wytyczne do modelowania komputerowego zjawisk rozwoju pożaru i rozprzestrzeniania dymu z użyciem technik CFD pozwoliło na uporządkowanie problemu zróżnicowanego poziomu powstających symulacji. W Polsce planowane jest stworzenie podobnych wytycznych.
EN
Swedish branch of the Association of Fire Protection Engineers (SFPE) has developed guidelines for the komputer modeling phenomena spread of fire and smoke, using CFD techniques which are used when performing available safe egress time analysis. It reduced in Sweden problem with different levels of computer simulations. On this base, it is planned to create similar ones in Poland.
EN
Risks of fire occurrence in underground mines are known for a long time. Evacuation and rescue plans allow to each underground mine to respond and establish control in case of emergency. The primary goal of this paper is to determine the optimal system for evacuation in case of fire in underground mines and through a process of computer simulation to be presented to all workers that are affected by this issue. In this study is developed a system that allows by using available software to work out the complete evacuation plans that include analysis of fire scenarios and optimal routes for evacuation. With development of database of fire scenarios, it is possible to plan routes for evacuation in all situations. This presented methodology can serve to make effective system for evacuation and rescue in case of fire and to help save lives and protect the financial investment in the mine. This methodology represents the most economical option of making an effective system for evacuation and also can serve as an idea of making a software package that includes all the steps of making a system for evacuation and rescue in case of fire in underground mines. This presented model will have increased accuracy compared to other models presented so far, because of the prepared 3D model of the underground mine which includes the actual dimensions of the mine along with its associated elements from which the fire dynamics and system for evacuation depends.
8
Content available remote Combustion hazards from building materials
EN
Fire smoke has a highly variable composition which is dependent on several factors, including oxygen supply, heating rate, temperature and the chemical structure of the materials that are burning. One area that is particularly important is the determination of volatiles that can have a negative effect on the environment as well as posing a serious hazard to human health. Prediction of toxic fire hazard depends on two parameters: time-concentration profiles for major products. These depend on the fire growth curve and the yields of toxic products; toxicity of the products, based on estimates of doses likely to impair escape efficiency, cause incapacitation, or death. Toxic product yields depend on the material composition, and the fire conditions. The most significant differences in fire conditions arise between flaming and non-flaming combustion. The burning of an organic material, such as a polymer, is a complex process, in which volatile breakdown products react, to a greater or lesser extent, with oxygen, producing a cocktail of products. These range from the relatively harmless carbon dioxide (CO2) and water, to products of incomplete combustion, including carbon monoxide (CO), hydrogen cyanide (HCN), organoirritants etc. In addition, depending on the other elements present, halogen acids, oxides of nitrogen, and sulphur, may be formed. The fire toxicity of building materials were investigated under a range of fire conditions, oxidative pyrolysis (smouldering) and well-ventilated flaming to under-ventilated flaming. The yields of the major toxic products, carbon monoxide, hydrogen cyanide and irritant gases nitrogen dioxide, hydrogen chloride and hydrogen bromide together with polycyclic aromatic hydrocarbons are presented as a function of fire condition. The toxicities of the effluents, showing the contribution of individual toxic components, are compared using the fractional effective dose (FED) model and LC50, (the mass required per unit volume to generate a lethal atmosphere under specified conditions).
9
Content available remote A research web-based system in the field of fire safety „FireRisks”
EN
Paper presents features of "FireRisk" - a research web-based system in the field of fire safety. A new approach in the study of fire safety problems is described, as well as two modules are presented: "FireRisk PR" (which allows to project the areas of potential and individual fire risk) and "FireRisk CBR" (case-based approach in the system of decision making).
PL
W warunkach pożarowych poprawna współpraca wszystkich urządzeń, systemów i instalacji ma strategiczne znaczenie dla ochrony i obrony budynku przed pożarem. Formalnym dokumentem, mającym rozwiązywać problem doboru i współdziałania systemów występujących w obiekcie jest „scenariusz rozwoju zdarzeń w czasie pożaru”, wymagany zapisem rozporządzenia Ministra Spraw Wewnętrznych i Administracji z dnia 16 czerwca 2003 w sprawie uzgadniania projektu budowlanego pod względem ochrony przeciwpożarowej. Autor rozporządzenia nie zawarł w nim żadnych wytycznych do opracowania tego dokumentu, pozostawiając ogromne pole do dyskusji na ten temat. W artykule dokonano interpretacji zapisu rozporządzenia o uzgadnianiu projektu budowlanego pod względem ochrony przeciwpożarowej. Następnie zdefiniowano, czym jest scenariusz rozwoju zdarzeń na wypadek pożaru – element projektu systemu sygnalizacji pożarowej.
EN
During fire incidents, appropriate co-operation between mechanisms, systems and installations (fire fighting and utility) is of strategic significance in the safeguarding of buildings and defence against fires. The problem of choice and correct interaction of systems found in premises is to be addressed by the production of a formal document ‘Scenario of developments during fire incidents’ with due regard to fire protection, at the approval stage of building projects. This regulatory requirement was introduced by the Minister of Internal Affairs and Administration on 16 June 2003. The author of the regulation avoided being specific about who should produce the document and its content, leaving much scope for discussion of these topics. This article provides an interpretation of the regulatory requirements dealing with building project approval in context of protection against fires. Furthermore, it defines the terms of ‘Scenario of developments during fire incidents’ – the project element concerned with alarm systems.
PL
W artykule określono bezpieczne warunki ewakuacji wynikających z założeń scenariusza pożarowego. Zapewnienie bezpiecznych warunków ewakuacji wynika z zależności wymaganego czasu bezpiecznej ewakuacji (WCBE) do dostępnego czasu bezpiecznej ewakuacji (DCBE). DCBE jest to czas od momentu powstania pożaru do chwili, po której warunki panujące w budynku stają się krytyczne dla jego użytkowników. WCBE jest to czas od powstania pożaru do momentu, po którym wszystkie osoby są w stanie opuścić bezpiecznie budynek. Na WCBE składają się czasy: detekcji pożaru, zaalarmowania, rozpoznania sytuacji, reakcji na zdarzenia oraz czas przemieszczania się ewakuowanych osób. Scenariusz pożarowy zakłada II stopniowy sposób alarmowania zgodny z przepisami Polskiego prawa [6]. Należy podkreślić, że zastosowane systemy przeciwpożarowe służące zagwarantowaniu bezpiecznych warunków ewakuacji powinny załączać się w jak najkrótszym czasie od momentu wykrycia pożaru.
EN
The article described safe evacuation conditions resulting from the established fire scenario. Safe evacuation conditions result from the relationship of the required safe evacuation time (RSET) to the available safety evacuation time (ASET). ASET is the period from the outbreak of fire until the time when conditions in the building become critical to its occupants. RSET is the period of time from the outbreak of fire until the moment when all of the occupants are able to safely exit the building. RSET consists of several periods: fire detection, sounding of alarm, assessment of the situation, response time to the events as well as the time to physically moves. Fire scenario establishes a two stage alarm process, in accordance with requirements of Polish law [6]. It should be emphasized that fire protection systems utilized to ensure safe evacuation conditions should activate as soon as possible immediately upon fire protection.
PL
W artykule przedstawiono zasady projektowania konstrukcji betonowych w sytuacji pożaru z uwzględnieniem wymagań normy EC2. Omówiono scenariusze pożaru służące określaniu rozkładu temperatury w konstrukcji, możliwe zakresy analizy obliczeniowej oraz podano podstawowe wymagania i zasady weryfikacji nośności według EC2. Zawarto informacje o wpływie temperatury na właściwości materiałowe (cieplne, mechaniczne) betonu i stali zbrojeniowej. Wreszcie, omówiono podstawowe metody określania odporności ogniowej konstrukcji, z uwzględnieniem metod zamieszczonych w EC2.
EN
In the paper there are presented the principles for design of concrete buildings in fire situation with taking into account the EC2 requirements. Fire scenarios for determining the temperature distribution within the structure together with possible analysis ranges are discussed, and then there are given basic design requirements and capacity verification principles according to EC2. Information as to the influence of temperature onto the material properties (thermal and mechanical) for concrete and reinforcing steel are included. Finally, there are presented different groups of methods for determining the fire resistance, including those given in EC2.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.