Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  fire barriers
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Pożar ściany z barierami ogniowymi
PL
W artykule przedstawiono badanie czterech różnych próbek ocieplonych systemem ETICS pod kątem bezpieczeństwa pożarowego. Opisano układy zabezpieczeń ogniowych poszczególnych próbek, a także wyniki badań. Zwrócono uwagę na celowość wykonywania barier ogniowych.
EN
This paper presents a study of four different ETICS insulated specimens for fire safety. Fire protection systems for individual specimens as well as test results were described,. Attention was given to the usefulness of making fire barriers.
EN
The paper presents results of the numerical analysis of the fire damper used in ventilation systems under the earthquake loading. The research was conducted in accordance with the recommendations of the Nuclear Safety Standards Commission. The aim of the analysis was to examine the fire damper with respect to its resistance to service loadings, structural integrity, and capability to stay operative after an earthquake. The analysis was carried out using the Finite Element Method in LS-Dyna software. The earthquake loading was modelled as accelerations, measured in three directions during the earthquake. For modelling of the materials behaviour, material models taking into account the influence of strain rate on hardening were used. The analysis consisted of three stages, which were: loading the construction with the earth gravity, earthquake simulation by loading with accelerations in three directions, and, finally, closing the fire damper. The analysis has shown that some of the construction elements undergo plastic deformations. However, the performed simulation of fire damper closing showed that despite these deformations, the device remains capable to keep its functionality and the damper closes hermetically. The results of the analysis were important design indications for the fire damper prototype.
3
Content available remote Przeciwogniowe zabezpieczanie materiałów palnych
PL
W przeglądowym artykule podano informacje związane z przeciwogniowym zabezpieczeniem palnych materiałów, a zawłaszcza polimerów, kompozytów oraz materiałów włókienniczych [1,2]. Artykuł opisuje mechanizmy działania ognioochronnego najczęściej stosowanych środków uniepalniających, które to mechanizmy sklasyfikowano w czterech grupach. Mechanizmy te opierają się na zasadzie fizycznego rozcieńczania palnych gazów (tworzących płomień) niepalnymi gazami, przerywającymi wolnorodnikową reakcję łańcuchową zachodzącą w palnych gazach, chemicznego oddziaływania poprzez wbudowanie w strukturę polimeru niepalnych struktur, hamowania przenikania ciepła oraz jego odbijania, a także stosowania pęczniejących powłok ochronnych. Powszechnie stosowane środki uniepalniające to: trójtlenek glinu, tlenek magnezu, tlenki antymonu, związki chloru i bromu, melamina i jej pochodne, związki fosforowe, związki boru, grafit, grafen i nanorurki węglowe oraz glinokrzemiany. Główne dziedziny ich stosowania to tworzywa sztuczne, kompozyty, drewno i produkty drewnopochodne, papier, materiały włókiennicze, farby i lakiery, a także powłoki ognioochronne konstrukcji stołowych i drewnianych. Ostatnie, bardziej efektywne rozwiązania to środki ognioochronne w postaci nanocząstek, pozwalające na znaczne zmniejszenie ilości wprowadzanych środków ognioochronnych, nawet poniżej 3% wagowych. W większości krajów obowiązują określone regulacje prawne co do stosowania środków ognioochronnych, głównie z powodu ich toksycznych właściwości i problemów związanych z recyklingiem wyrobów, zawierających te środki. Skuteczność zabezpieczenia różnorodnych materiałów przed działaniem ognia, stosowanych w różnych dziedzinach działalności gospodarczej, badano zgodnie z normami ISO oraz normami krajowymi.
EN
The review article consist data connected with flame and fire retardancy of different materials, including polymers, composites, wood, and wooden products, fibres and textiles [1,2]. In paper are presented different mechanisms of flame retardancy, which is classified into 4 different groups. These mechanisms rely on: physical dilution of flammable gases, by inflammable gases, and braking the free-radical reaction of flame, chemical intrinsically built non-flammable structures in structure of polymers, insulation, and reflection of heat transfer, application of protective, especially intumescent coatings. Flame retardants, used and produced in global scale, generally are based on aluminium oxide, magnesium oxide, anti-mony oxide, chlorine and bromine compounds, melamine and their relatives, phosphorus compounds, boron compounds, graphite, graphen, carbon nano-tubes and aluminum silicates. The main area of their application are polymers and composites, wood and wooden products, paper, fibres and textiles, paints, and varnishes and fire retardant coatings e.g. intumescent also for steel and wood constructions. The nano-flame retardants, introduced recently allow for decreasing their dose, even below 3% of their mass. In the most of the world countries, in different area of economy, there are standards to obey, regarding using of flame retardants e.g. ISO standards and domestic in particular countries, mainly due to the existing problems with toxic properties of flame retardants and with recycling of products, which consist flame retardants.
5
Content available remote The lignocellulosis and vermiculite composite as fire barriers
EN
Lignocellulosic boards are one of the most popular materials widely used in the building industry for outfitting (furniture) and for interior decorating (wall and ceiling panelling). This type of boards possesses considerable advantages such as high mechanical strength, thermal insulation properties and possibility of different type of finishing application. Due to their unfavourable behaviour under fire conditions however their use has often been limited particularly in tall and public buildings. Investigation of the Institute of Natural Fibres concerning the flame-retardant particleboard's with application both organic and mineral binders and mineral geopolymers were carried. Technology of three-layer composite board manufacturing in which the inner layer is made of lignocellulosic particles while the outer layers of expended vermiculite as fire barrier was developed. The surface finishing of these composite boards can be made by covering them by veneer, foils (Al), laminates, paints and intumescent fire barrier. The influence of different ratio of the mineral particles to the lignocellulosic particles and different fractions (granulation's) both natural and expanded vermiculite on flammability and physic-mechanical properties of one- and three-layer particleboard are presented.
PL
Płyty lignocelulozowe są jednym z najbardziej powszechnych materiałów stosowanych w przemyśle budowlanym, wyposażeniowym (meble) oraz dekoracji wnętrz (panele ścienne i sufitowe). Jednakże niekorzystne zachowanie w warunkach pożaru ogranicza zakres ich wykorzystania. Obecnie stosowane metody i środki obniżają, do pożądanego stopnia, palność płyt lignocelulozowych. Jedną z metod jest dodanie wypełniaczy mineralnych w procesie wytwarzania płyt. Wypełniacze mineralne, dodawane do płyt w postaci cząstek o różnej granulacji, oddzielają materiał łatwo palny, jakim są cząstki lignocelulozowe zawarte w płytach, oraz obniżają przewodnictwo cieplne, co łącznie daje efekt ognioodporności płyt. Najpopularniejszymi wypełniaczami mineralnymi stosowanymi w tym celu są wermikulit i perlit. Do wytwarzania niniejszego kompozytu zastosowano paździerze lniane, wióry drzewne, wermikulit oraz termoplastyczne substancje zaklejające na bazie żywic syntetycznych: żywica 112E, Silekol M i Silekol W-l. W przeprowadzonych próbach laboratoryjnych w pierwszym cyklu badań wytwarzano płyty jednorodne, a następnie płyty trójwarstwowe, stosując na warstwy zewnętrzne wermikulit, a na warstwę wewnętrzną paździerze lniane lub wióry drzewne. Wermikulit stosowano w postaci niespęcznionej oraz spęcznionej w różnym udziale procentowym w stosunku do cząstek zaklejanych. Celem prób było uzyskanie odpowiedzi, w jakiej postaci wermikulit jest najbardziej przydatny do produkcji płyt, mając na uwadze względy ekonomiczne i jakościowe. Przy wytwarzaniu płyt jednorodnych z zastosowaniem wermikulitu surowego udział wermikulitu kształtował się na poziomie 50:80%, a dla postaci spęcznionej 80:100%. W przypadku wytwarzania płyt warstwowych udział wermikulitu surowego i spęcznionego wynosił 40:60%. Dla płyt jednorodnych z wermikulitem surowym efekt zabezpieczenia ogniochronnego w stopniu niezapalnym uzyskiwano, dodając do cząstek lignocelulozowych o ok. 30:40% mniej wermikulitu niż w postaci spęcznionej. W przypadku wytwarzania płyt jednorodnych zauważalny wpływ na ilość wypełniacza miał również rodzaj cząstek lignocelulozowych (wióry, paździerze). Najlepsze rezultaty badań nad optymalną ilością wypełniacza uzyskano, wytwarzając ptyty trójwarstwowe przy zastosowaniu wermikulitu spęcznionego na warstwy zewnętrzne (jako barierę ogniową), a paździerzy lub wiórów drzewnych na warstwę wewnętrzną. Rezultatem prowadzonych prac jest technologia wytwarzania trójwarstwowego niezapalnego kompozytu płytowego, w którym warstwę wewnętrzną stanowią cząstki ligno­celulozowe, a warstwy zewnętrzne wermikulit spęczniony, stanowiący barierę ogniową. Właściwości opracowanego kompozytu, w porównaniu z typową płytą paździerzową, przedstawiono w tabelach l i 2 oraz na rysunku 2. Palność opracowanego kompozytu (tab. 1) określono, stosując dwa testy palności. Pierwszym z nich była Polska Norma PN-B-02874, będąca modyfikacją Normy Francuskiej NF P 92-501 dla materiałów budowlanych, zaś drugim był pomiar na kalorymetrze stożkowym przeprowadzony zgodnie z ISO 5660. Opracowany kompozyt płytowy stanowi dobry materiał płytowy, który, zgodnie z polskimi przepisami budowlanymi, należy do klasy materiałów niezapalnych. Wyniki otrzymane podczas testów w kalorymetrze stożkowym wskazują, że trójwarstwowe płyty kompozytowe nie zapalają się w strumieniu cieplnym 30 kW/m2, a przy ekspozycji na działanie intensywniejszego strumienia cieplnego równego 50 kW/m2 ogólna ilość wydzielonego ciepła jest trzykrotnie mniejsza niż w przypadku typowej płyty paździerzowej. Technologia produkcji płyt kompozytowych oraz ich właściwości fizyczne i mechaniczne są podobne do typowych płyt paździerzowych i wiórowo-paździerzowych. Płyty te mogą być stosowane w: wyposażeniu wnętrz, przemyśle budowlanym, budownictwie okrętowym, transporcie kolejowym.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.