Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  finite-element model
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
One of the effective techniques to strengthen the subgrade is boring and mixing technology, which is based on the immersion of vertical elements – piles into the subgrade. This method of strengthening significantly affects the stress state of the track superstructure. Two options of the placement of strengthening elements are examined in this paper. To determine the influence of position of strengthening elements on the stress state of the track superstructure, appropriate finite-element models were created. The models fully reflect the geometric and deformation characteristics of a real subgrade, which is strengthened by piles. The calculated stress state of the track superstructure is shown and analyzed in this paper. The main contribution of the paper lies in optimization of the geometric parameters of the technology to reduce the stress state of the "track superstructure–subgrade–soil basement" system. The results show that the location of piles near the rails is more effective than the location of piles near the ballast section.
EN
In this investigation, the effective mechanical, coupling and dielectric properties of Macro-fiber-composites (MFCs) consisting of piezorod-element constituents are determined using representative volume element method combined with finite element analysis. Experiments are conducted on piezo-bar-element MFCs to understand the applicability of the proposed approach which would later be extended to composites with modified geometric pattern. The longitudinal strains with respect to static deflections of beam and forced displacements under varying electrical loads are measured for the MFCs, and compared with the numerical simulations. Based on the good agreement from the result comparisons of piezo-bar-element MFCs, the effective material properties of piezo-rod-element MFCs are numerically determined based on the RVE approach.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.