Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  finite mapping
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Birational finite extensions of mappings from a smooth variety
EN
We present an example of finite mappings of algebraic varieties ƒ : V → W, where V ⊂ kn, W ⊂ kn+1, and F : kn → kn+1 such that F¦v = ƒ and gdeg F = 1 < gdeg/ (gdeg h means the number of points in the generic fiber of h). Thus, in some sense, the result of this note improves our result in J. Pure Appl. Algebra 148 (2000) where it was shown that this phenomenon can occur when V ⊂ kn, W ⊂ km with m ≥ n + 2. In the case V, W ⊂ kn a similar example does not exist.
2
Content available remote A note on geometric degree of finite extensions of mappings from a smooth variety
EN
Let ƒ : V → W be a finite polynomial mapping of algebraic subsets V, W of k[sup]n and k[sup]m, respectively, with n ≤ m. Kwieciński [J. Pure Appl. Algebra 76 (1991)] proved that there exists a finite polynomial mapping F : k[sup]n → k[sup]m such that F| v = ƒ. In this note we prove that, if V, W ⊂ k[sup] are smooth of dimension k with 3k + 2 ≤ n, and ƒ : V → W is finite, dominated and dominated on every component, then there exists a finite polynomial mapping F : k[sup]n → [sup]n such that F|v = ƒ and gdeg F ≤ (gdegƒ)[sup]k+1. This improves earlier results of the author.
3
Content available remote Finite extensions of mappings of finite sets
EN
In this note we prove that for every finite sets V, W [is a subset of] [C^k] with k, #V, #W > 1 and for every surjective mapping f : V --> W there exists a finite mapping F : [C^k] --> [C^k] such that F\v = f, gdegF = gdegf and degF [is less than or equal to (#V - 1)^2].
4
Content available remote On some characterization of proper polynomial mappings
EN
It is well known that a proper, in the classical topology, polynomial mapping is closed in the Zariski topology. In the paper we prove that the inverse is true. Namely, any non-constant polynomial mapping from [C^n] into [C^m] which is closed in the Zariski topology is proper in the classical topology.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.