Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  finite conductivity
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The present work seeks to investigate the propagation of magneto-thermoelastic disturbances produced by a thermal shock in a finitely conducting elastic half-space in contact with vacuum. Normal load has been applied on the boundary of the existing media that is supposed to be permeated by a primary uniform magnetic field. We employ both the parabolic type (dual phase-lag magneto-thermoelasticity of type I (MTDPL-I)) and hyperbolic type (dual phase-lag magneto-thermoelasticity of type II (MTDPL-II)) dual phase-lag heat conduction models to account for the interactions among the magnetic, elastic and thermal fields. The integral transform technique is applied to solve the present problem and the analytical results of both cases have been obtained separately. A detailed analysis of results has been made in order to understand the nature of waves propagating inside the medium and the effects of the phase-lag parameters. The effect of the presence of magnetic field has been highlighted. Numerical results have also been obtained to analyze the effect of magnetic field on the behavior of the solution more clearly and a detailed analysis of the results predicted by two models has been presented. It has been noted that in some cases there are significant differences in the solution obtained in the contexts of MTDPL-I and MTDPL-II theory of magneto-thermoelasticity.
EN
The propagation of electromagneto-thermoelastic disturbances produced by a thermal shock in a finitely conducting elastic half-space is investigated. The formulation is applied to two-dimensional equations of generalized thermoelasticity Green and Lindsay's theory with two relaxation times. There acts an initial magnetic field parallel to the plane boundary of the half-space. The medium deformed because of thermal shock and due to the application of the magnetic field, there result an induced magnetic and an induced electric field in the medium. The Maxwell's equations are formulated and the electromagneto-thermoelastic coupled governing equations are established. The normal mode analysis is used to obtain the exact expressions for the considered variables. The distributions of the considered variables are represented graphically for different values of times. From the distributions, it can be found the wave type heat propagation in the medium. This indicates that the generalized heat conduction mechanism is completely different from the classic Fourier's in essence. In generalized thermoelasticity theory heat propagates as a wave with finite velocity instead of infinite velocity in medium.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.