Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  filtering material
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The work presents the results of experimental studies on the air purification efficiency after accelerated composting of a mixture of cattle manure and straw in a chamber-type biofermenter. The operation of an experimental plant that simulates this process was described. A process optimization criterion was established, its values were determined for each of the pollutants – ammonia and hydrogen sulfide. The maximum purification efficiency for ammonia was 92%, achieved at 47% moisture content of the filtering material and 58% compost weight parts at 30 °C. For hydrogen sulfide, the maximum purification efficiency was 95%, achieved at 50% moisture content of the filtering material and 52% compost weight part at 28 °C.
EN
The basic aim of this research was to establish the efficiency of filtering materials widely used in respiratory protection devices with particular interest in their porosity, degree of electric and changeable process parameters, such as the flow rate of the test nanoaerosol and the size range of nanoparticles. Tests were carried out with an NaCl solid aerosol of 3.2 × 105 particles/cm3 for the range of particle size of 7–270 nm, at aerosol flow rate of 1800, 2700, 3600, 4500 and 5400 L/h. The tests showed that electrospun nonwovens were the most effective filtering materials for nanoparticles over 20 nm. Melt-blown electret nonwovens with lower porosity than electrospun nonwovens had higher values of penetration of 1%–4%. Those materials provided very efficient protection against nanoparticles of certain sizes only.
EN
This paper presents the results of a study on antimicrobial activity of polymer filter nonwovens produced by needle-punching or melt-blowing with an addition of disinfecting agents. The first part of the paper discusses how the biocidal activity of nonwovens is a function of the active agent added to the nonwovens, the duration of the contact of microorganisms with nonwovens and the type of microorganisms. The types of fibres and disinfecting agents had a considerable effect on the biocidal activity of nonwovens. The biocidal effect of nonwovens increased with the duration of their contact with microorganisms. Fibre activity differed considerably depending on the species of the microorganism. The microorganisms most sensitive to biocidal activity of the active filter nonwoven were S. aureus, M. flavus and E. coli. There were no biocidal effects on spore-forming bacterium B. subtilis.
EN
The second part of the article presents the results of a study of antimicrobial activity of filter nonwovens with an addition of biocides, as a function of the presence of sweat in the environment and the method of microbe deposition on a nonwoven in the form of a liquid and a bioaerosol. At the same time, the filtration efficiency of nonwovens against microorganisms in the form of a bioaerosol was tested with the dynamic method. The results showed that the addition of sweat on the surface of a nonwoven resulted in an insignificant decrease of biological activity that still remained high. Moreover, an active nonwoven showed biostatic and biocidal activity only when microbes were deposited on the surface in the form of a solution. The nonwoven did not show any biological activity after deposition of microorganisms with the dynamical method in the form of a bioaerosol.
PL
Przedstawiono wpływ zanieczyszczeń płynów eksploatacyjnych na zużycie elementów silnika i jego trwałość. Scharakteryzowano systemy filtracji powietrza wlotowego pojazdów mechanicznych. Omówiono podstawowe mechanizmy filtracji w przegrodzie porowatej. Pokazano możliwość poprawy efektywności filtracji powietrza wlotowego do silnika przy wykorzystaniu materiałów z dodatkiem nanowłókien.
EN
Influence of polluted exploitation fluids on wear of engine elements and its durability is described. Filtration systems of inlet air used in vehicle combustion engines are characterized. The basic mechanisms of filtration in porous partition are discussed. Improvement in filtration efficiency of air getting into engine due to application of materials with nanofibers is shown.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.