Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  filter bank multicarrier
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Visible light communication based on a filter bank multicarrier holds enormous promise for optical wireless communication systems, due to its high-speed and unlicensed spectrum. Moreover, visible light communication techniques greatly impact communication links for small satellites like cube satellites, and pico/nano satellites, in addition to inter-satellite communications between different satellite types in different orbits. However, the transmitted visible signal via the filter bank multicarrier has a high amount of peak-to-average power ratio, which results in severe distortion for a light emitting diode output. In this work, a scheme for enhancing the peak-to-average power ratio reduction amount is proposed. First, an algorithm based on generating two candidates signals with different peak-to- average power ratio is suggested. The signal with the lowest ratio is selected and transmitted. Second, an alternate direct current-biased approach, which is referred to as the addition reversed method, is put forth to transform transmitted signal bipolar values into actual unipolar ones. The performance is assessed through a cumulative distribution function of peak-to-average power ratio, bit error rate, power spectral density, and computational complexity. The simulation results show that, compared to other schemes in literature, the proposed scheme attains a great peak-to-average power ratio reduction and improves the bit the error rate performance with minimum complexity overhead. The proposed approach achieved about 5 dB reduction amount compared to companding technique, 5.5 dB compared to discrete cosine transform precoding, and 8 dB compared to conventional direct current bias of an optical filter bank multicarrier. Thus, the proposed scheme reduces the complexity overhead by 15.7% and 55.55% over discrete cosine transform and companding techniques, respectively.
EN
Filter bank multicarrier waveform is investigated as a potential waveform for visible light communication broadcasting systems. Imaginary inter-carrier and/or inter-symbol interference are causing substantial performance degradation in the filter bank multicarrier system. Direct current-biased optical filter bank multicarrier modulation overcomes all the problems of direct current-biased optical-orthogonal frequency division multiplexing modulation approaches in terms of speed and bandwidth. However, it also wastes a lot of energy while transforming a true bipolar signal into a positive unipolar signal by adding direct current-bias. In this paper, a flip-filter bank multicarrier-based visible light communication system was introduced to overcome this problem. In this system, a bipolar signal is converted to a unipolar signal by isolating the positive and negative parts, turning them to positive and then delivering the signal. Also, a new channel estimation scheme for a flip-filter bank multicarrier system is proposed which improves the channel estimation performance compared to that of each of the conventional schemes. The proposed system performance is measured in terms of bit error rate, normalized mean squared error, and constellation diagram. The superiority of the proposed scheme over other conventional structures has been successfully verified by MATLAB 2020b simulation experiments results. These results are evaluated under indoor visible light communication standard.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.