Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  film stability
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The structure of thin water films during the rupture process was investigated by a new approach, which combines molecular dynamics simulation (MDS) with image processing analysis. The analysis procedure was developed to convert MDS trajectories to readable 3D images. The water films were studied at different thicknesses by MDS to determine the critical thickness at which the film ruptures. The potential energy of each specific film thickness during the simulation time was analyzed, and the results showed that the potential energy of stable films remained unchanged while the potential energy kept decreasing for films which ruptured during the simulation time. By applying the new procedure, the molecular porosity, which is defined as the void fraction between the volume of molecular pores in the water film and the total volume of the water film, was calculated. The results of molecular porosity for different film thicknesses during the simulation time suggested a critical molecular porosity as 49%. In other words, stable films have a molecular porosity of less than 49%. If a water film has a molecular porosity greater than 49%, rupture occurs during the simulation.
EN
Bubble attachment phenomena are examined using Molecular Dynamics Simulations (MDS) for the first time. The simulation involves a nitrogen nano bubble containing 906 nitrogen molecules in a water phase with 74,000 water molecules at molybdenite surfaces. During a simulation period of 1 ns, film rupture and displacement occurs. The attached nanobubble at the hydrophobic molybdenite face surface results in a contact angle of about 90º. This spontaneous attachment is due to a “water exclusion zone” at the molybdenite face surface and can be explained by a van der Waals (vdW) attractive force, as discussed in the literature. In contrast, the film is stable at the hydrophilic quartz (001) surface and the bubble does not attach. Contact angles determined from MD simulations are reported, and these results agree well with experimental and MDS sessile drop results. In this way, film stability and bubble attachment are described with respect to interfacial water structure for surfaces of different polarity. Interfacial water molecules at the hydrophobic molybdenite face surface have relatively weak interactions with the surface when compared to the hydrophilic quartz (001) surface, as revealed by the presence of a 3 Å “water exclusion zone” at the molybdenite/water interface. The molybdenite armchair-edge and zigzag-edge surfaces show a comparably slow process for film rupture and displacement when compared to the molybdenite face surface, which is consistent with their relatively weak hydrophobic character.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.