The aim of this work was to present a method of tissue culture research by measuring the impedance of cells cultured in the presence of nichrome. For this purpose, the Electric Cell-substrate Impedance Sensing system was used with a prototype substrate containing comb capacitors made of nichrome. Magnetron sputtering, photolithography and etching processes were used to produce the thin-film electrodes. In the experimental part, cells of mouse fibroblast cell line L929 were cultured according to the instruction manual in complete medium, under controlled growth conditions. Inoculation of arrays was carried out by 300 microliters per well of cell suspension at ~1.2×105 cells/ml. The results of the monitoring cells behavior in tissue culture indicate good cell viability and proliferative potential.
Despite of applying modern biomaterials during constructing long term orthopaedic implants, in clinical practice there are still present wide range of complications, particularly concerning matter of implant - tissue interactions. Since interaction between implant and living tissue depends mainly on biomaterial surface features, we decided to modify orthopaedic alloys to improve their biological properties. The object of this experiment was in vitro evaluation of selected biological properties, particularly cytotoxicity of titanium alloy and 316L stainless steel substrates coated with SiO2 or TiO2 thin films. The coatings were synthesized by sol-gel method. Each samples was placed into mouse fibroblast culture. The cultures in presence of tested materials were maintained for three days. We found no distinct toxic effect of tested biomaterials. We noticed increase of fibroblast proliferation in cultures with uncoated titanium and particularly SiO2 coated titanium plates.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.