Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 14

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  fibre metal laminates
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The widespread use of composite materials in the construction of machines encourages to better understand their properties and the impact of various external factors on these properties. Fibre metal laminates (FMLs) consist of alternating layers of metal and a polymer matrix laminate reinforced with continuous fibres. The aim of this work was to investigate the effect of cyclical temperature changes and thermal shocks (heating the sample to a high temperature in a short time) on the strength properties of FMLs from AW-1050A aluminium sheet, glass fibre fabric and carbon fibre fabric. The research concerns the determination of how cyclical temperature changes affect the tensile strengths properties of FMLs. The results indicate a small effect of the cycles on the tensile strength of the composites. The composites with glass fibre reinforced laminate also showed high resistance to delamination, moreover, the samples did not delaminate even after they were broken. The carbon fibre reinforced laminate composites showed a tendency to delaminate after heat treatment.
PL
Coraz powszechniejsze zastosowanie materiałów kompozytowych w konstrukcji maszyn skłania do podejmowania działań mających na celu lepsze poznanie ich właściwości, oraz wpływu różnych czynników zewnętrznych na te właściwości. Kompozyty metalowo-włókniste (ang. Fibre Metal Laminates) składają się z naprzemiennie ułożonych warstw metalu oraz laminatu o osnowie polimerowej wzmacnianego włóknami ciągłymi. Celem pracy było zbadanie wpływu cyklicznych zmian temperatury oraz szoków termicznych (nagrzanie próbki do wysokiej temperatury w krótkim czasie) na właściwości wytrzymałościowe laminatów metalowo-włóknistych wykonanych na bazie blachy aluminiowej AW-1050A pokrytej jednostronnie laminatem wzmocnionym włóknemszklanym lub włóknem węglowym. Badania dotyczyły ustalenia jak zmiany temperatury, w tym przede wszystkim zmiany cykliczne, wpływają na właściwości wytrzymałościowe laminatów. Wyniki wykazały mały wpływ liczby cykli obciążeń cieplnych na wytrzymałość kompozytów na rozciąganie. Laminaty wzmocnione włóknem węglowym wykazywały tendencję do rozwarstwienia.
EN
The study describes the results of tensile strength tests of hybrid laminates composed of thin titanium layers and glass and carbon fibre reinforced polymer layers. The tests were conducted at -120, RT (23°C) and 85°C. The tests allowed the basic mechanical properties to be determined, including: tensile strength, Young's modulus and strain at failure. The tests proved that as the temperature decreases, the strength of titanium/glass fibre reinforced polymers increases by 21 to 26% depending on the configuration, while the strength of titanium/carbon fibre reinforced polymers decreases by 6 to 8%. The Young's modulus values for all the tested systems increase by 3 to 7% as the temperature drops. A different tendency was observed regarding the strain at failure which decreases by 1 to 11% as the temperature drops. The tensile strength test results for the increased temperature (85°C) differ only slightly from those obtained at room temperature. The macroscopic analysis of the failed specimens revealed the existence of characteristic, prevailing forms of failure, namely breaking fibres, matrix cracking, including delamination and permanent deformation of the titanium layers.
PL
Przedstawiono wyniki badań wytrzymałości na rozciąganie laminatów hybrydowych składających się z cienkich warstw tytanowych oraz warstw kompozytów polimerowych wzmacnianych włóknami szklanymi oraz węglowymi. Próby przeprowadzono w temperaturze -120, RT (23°C) oraz 85°C. Podczas badań wyznaczono podstawowe właściwości mechaniczne, takie jak: wytrzymałość na rozciąganie, moduł Younga oraz odkształcenie przy zniszczeniu. Przeprowadzone próby wykazały, że wraz ze spadkiem temperatury wytrzymałość laminatów wzmacnianych włóknem szklanym wzrasta od 21 do 26% w zależności od układu, natomiast wytrzymałość laminatów wzmacnianych włóknem węglowym spada od 6 do 8% wraz ze spadkiem temperatury. Wartości modułu Younga dla wszystkich badanych układów wzrastają od 3 do 7% wraz ze spadkiem temperatury badania. Odmienną tendencję odnotowano dla wartości odkształcenia przy zniszczeniu, która zmniejsza się wraz ze spadkiem temperatury od 1 do 11%. Wyniki badań wytrzymałości na rozciąganie uzyskane dla temperatury podwyższonej (85°C) nie różnią się znacząco od wyników uzyskanych w temperaturze odniesienia (RT). Makroskopowa analiza zniszczonych próbek wykazała występowanie charakterystycznych, dominujących form zniszczenia w postaci zerwania włókien, pękania osnowy, w tym delaminacji oraz trwałych deformacji blach tytanowych.
EN
Hybrid materials provide a high potential for lighter structures and an improved crash performance. The investigated hybrid sandwich laminate consists of steel cover sheets and a carbon fibre-reinforced thermoplastic core. The first part of this investigation is focusing on an analytical prediction as well as on a comparison of numerical and experimental results for the evaluation of the laminate properties to get a general understanding for the material. Within the second part the forming behaviour of this material is investigated experimentally, analytically and numerically by means of cup deep drawing. These results indicate that cup deep drawing of thermoplastic fibre metal laminates is possible but limited. The limits in terms of achievable drawing depths are found to be defined by cracking and wrinkling of the cover sheets as well as fibre failure in the composite material.
PL
Hybrydowe kompozyty warstwowe FML (Fibrę Metal Laminates) stanowią coraz powszechniejszą grupę materiałów kompozytowych w budowie statków powietrznych. Cechują się bardzo pożądanymi właściwościami, tj. dużą sztywnością przy zachowaniu niskiej masy, a także wysoką wytrzymałością zmęczeniową. Ze względu na dobre cechy użytkowe, kompozyty warstwowe są atrakcyjne dla innych gałęzi przemysłu, m.in. motoryzacji i przemysłu maszynowego. Ograniczeniem rozpowszechniania kompozytów FML jest złożona, tym samym kosztowna technologia ich wytwarzania wymagająca stosowania autoklawu. W pracy przedstawiono badania kompozytu z grupy FML typu GLARE wykonanego dwiema metodami poza autoklawem. Rozpatrywany kompozyt wykonano z blach ze stopu aluminium 2024-T3 oraz preimpregnatu szklanego, w jednej z wersji wykonania, natomiast w drugiej użyto suchej tkaniny szklanej. Przeprowadzono badania jakości struktury kompozytu przy użyciu tomografu. Wykonano badania wytrzymałości statycznej na rozciąganie i rozwarstwienie. Opisane badania wykazały, że bez użycia autoklawu istnieje możliwość uzyskania dostatecznej jakości kompozytu, mogącego mieć zastosowanie w mniej odpowiedzialnych węzłach konstrukcji wyrobów, jednakże w przedstawionych próbach wykazano brak dostatecznej adhezji pomiędzy warstwami kompozytu.
EN
Fibre Metal Laminates (FML) are an increasingly common group of composite materials used in aerospace industry. They characterized by desirable properties for the aerospace and automotive industry i.e. high stiffness, lightweight and good fatigue properties. Because of these properties FML composites are desirable also in other Industries, including automotive or machine industry. A limitation of the dissemination of FML composites is complex and thus costly manufacturing process that requires the use of an autoclave. The paper presents the study of GLARE type composite that is member of FML group fabricated without use autoclave. Considered composites were made of an aluminium alloy 2024-T3 and glass fibre prepreg in one embodiment, while the second uses a dry glass woven fabric. Testing of composite structures was performed by use a tomograph. Research of tensile and peel static strength were realized. These tests have shown that without the use of an autoclave it is potentially possible to obtain sufficient performance composite which could be used in less responsible nodes construction of the devices, but in the presented samples demonstrated a lack of sufficient adhesion between the layers of the composite. The paper presents the study of GLARE type composite that is member of FML group fabricated without use autoclave. Considered composites were made of an aluminium alloy 2024-T3 and glass fibre prepreg in one embodiment, while the second uses a dry glass woven fabric. Testing of composite structures was performed by use a tomograph. Research of tensile and peel static strength were realized. These tests have shown that without the use of an autoclave it is potentially possible to obtain sufficient performance composite which could be used in less responsible nodes construction of the devices, but in the presented samples demonstrated a lack of sufficient adhesion between the layers of the composite.
5
Content available remote Comparative analysis of failure of Al/GFRP laminates after tensile strength test
EN
Fibre-metal laminates are modern composite materials that are replacing certain metal elements in aircraft structures. Such hybrid materials have synergic properties determined by their component properties and configuration. This article presents studies of GLARE laminates consisting of aluminium and glass-epoxy composite sheets manufactured using the autoclave method. 2024T3 aluminium alloy sheets were subjected to chromic acid anodising (CAA) and sulphuric acid anodising (SAA). Three different lay-up configurations of the composite layers were used in the structure of 2/1 laminates: [0°], [0/90°] and [±45°]. Tensile strength studies were conducted using a strength testing machine (MTS 322) in accordance with the ASTM standard for composite materials. Microstructural and fractographic observations were conducted using an optical microscope and a scanning electron microscope (Zeiss Ultra Plus, NovaNanoSEM 450). The tensile strength test did not result in cracking of the metal plies; it was the composite that underwent degradation. After the test, the samples were found to have undergone deformation and delamination as a result of the tension; the laminates with an SAA layer were more greatly affected. The plastic range properties are determined by the fibre configuration. The metal/composite adhesion force was higher than the cohesive force in the composite for all the configurations. The degradation mechanism of the laminate structure during uniaxial tensile strength tests does not depend on the type of anodised layer. The configuration of the fibrous composite layers affects the propagation of cracks in the composite area. Transverse cracking of the fibres, cracking of the anodised layer and decohesion of the matrix with tearing-out of fibres were observed in all the cases. The surface morphology of the fracture caused by the decohesion of the composite in an FML is of the same nature as the fracture in the composite material.
PL
Laminaty metalowo-włókniste to współczesne materiały złożone zastępujące niektóre elementy metalowe w konstrukcjach lotniczych. Taki materiał hybrydowy posiada właściwości synergiczne, determinowane właściwościami komponentów i ich konfiguracją. W niniejszej pracy przedstawiono badania laminatów typu Glare, składających się z blach aluminium i kompozytu epoksydowo-szklanego, wytworzonych metodą autoklawową. Blachy ze stopu aluminium gat. 2024T3 anodowano w roztworze kwasu chromowego (CAA) oraz w roztworze kwasu siarkowego (SAA). W budowie laminatów 2/1 wykorzystane zostały trzy różne konfiguracje ułożenia warstw kompozytu: [0°], [0/90°] oraz [±45°]. Badania wytrzymałości na rozciąganie zostały przeprowadzone przy użyciu maszyny wytrzymałościowej (MTS 322) zgodnie z normą ASTM dla materiałów kompozytowych. Obserwacje mikrostrukturalne i fraktograficzne zostały przeprowadzone przy użyciu mikroskopu optycznego i skaningowej mikroskopii elektronowej (Zeiss Ultra Plus, NovaNanoSEM 450). W teście rozciągania nie nastąpiło pęknięcie warstw metalu, degradacji uległ kompozyt. Po zakończeniu testu wystąpiła deformacja próbek i ich rozwarstwienie na skutek naprężenia, silniejszy efekt zaobserwowano w laminatach z warstwą SAA. O właściwościach w zakresie plastycznym decyduje konfiguracja włókien. We wszystkich układach siła adhezji metal/kompozyt przewyższała siłę kohezji w kompozycie. Mechanizm degradacji struktury laminatów podczas jednoosiowego rozciągania nie zależy od typu warstwy anodowej. Konfiguracja warstw kompozytu włóknistego wpływa na propagację pęknięć w obszarze kompozytu. We wszystkich przypadkach nastąpiło pękanie poprzeczne włókien, pękanie warstwy anodowej oraz dekohezja osnowy z odrywaniem włókien. Morfologia powierzchni przełomu powstałego w wyniku dekohezji kompozytu w FML ma taki sam charakter jak przełom w materiale kompozytowym.
EN
The purpose of this paper is to investigate the impact behaviour and damage characterization of carbon fibre reinforced aluminium hybrid laminates (Al/CFRP) in comparison to classic carbon fibre reinforced polymer (CFRP) at low-velocity and low-energy impact. Impact damage characteristic with damage initiation and progression, internal failure modes and understanding of the role of the metal layers in the impact behaviour under low-energy were examined and discussed. The damage mechanism of the tested laminates is very complex. There is an internal degradation of the material, with the plastic deformation in case of fibre metal laminates. Characteristic matrix cracks (bending and shearing cracks) running at the fibre–matrix interface in composite layers are the first damage mode. The critical damage mode is delaminations observed between composite layers with different orientation as well as delaminations at the metal–composite interface in fibre metal laminates. For the tested materials, particularly carbon fibre reinforced composites, the absorbed impact energy is mainly connected with elastic response and damage of the laminate. In case of fibre metal laminates the absorbed energy is also connected with plastic deformation of the laminate, occurring especially in the metal layers. High impact resistance of fibre metal laminates indicates that metal (aluminium) layers may prevent delamination propagation and impactor penetration.
7
Content available remote The issue of residual strength tests on thin fibre metal laminates
EN
Modern aircraft structures contain sheathing elements which are supposed to not only carry loads, e.g static ones, but also at the same time possess resistance to corrosion or dynamic impact. As a consequence, new kinds of hybrid materials, e.g fibre metal laminates, were created. They combine the mechanical and physical properties of various materials. Until now, the most common and widespread structures are GLARE® laminates (aluminium/glass-epoxy composites), characterised by high fatigue and static properties, as well as by impact resistance. The concurrent influence of many negative factors during exploitation causes a gradual decrease in the functional properties of these materials. One of the factors affecting e.g. static strength is low-velocity impact. Low-velocity impact often leads to macroscopically invisible damage of the composite structure, with delaminations and ply cracking occurring during impact energy absorption. Fibre metal laminates possess a much better dynamic load-carrying capacity, limiting negative ply cracking in the composite and absorbing some impact energy through elastic-plastic deformation. In order to assess the influence of low-velocity impact on the residual strength of composite materials, Compression After Impact (CAI) tests are carried out. Normalised CAI testing is used for classic 5 mm thick composite structures. However, as the literature suggests, it is not effective in the case of fibre metal laminates, particularly those with a thickness more then 1.1 mm. The work presents an analysis of the possibility of conducting an effective (ensuring valid assessment of strength reduction) CAI test for 1.5 mm thick FML panels after dynamic impact. An alternative workstation construction was proposed, and simulations and experimental verifications were conducted. It was observed that a solution based on the ASTM standard does not apply to thin FML laminated panels. Deformation of the specimen occurs in areas located far from the impact site. As a consequence, the strength values differ neither for plates with impact-induced damage nor ones without it. The proposed alternative holder construction for compression after impact of thin fibre metal laminates plates testing eliminates premature material damage. On the basis of the conducted numerical simulations, it was stated that using the ASTM holder for CAI test leads to the occurrence of the first buckling mode in the damage area, with stress concentration in its vicinity. Such a form of deformation may allow one to correctly assess the influence of impact damage on FML composites.
PL
Współczesne struktury lotnicze zawierają w sobie elementy pokryciowe, które mają za zadanie przenosić obciążenia m.in. statyczne, a przy tym być odporne na korozję czy uderzenia dynamiczne (impact). W związku z tym opracowano nowoczesne materiały hybrydowe, m.in. laminaty metalowo-włókniste, łączące w sobie właściwości różnych materiałów pod względem właściwości fizycznych i mechanicznych. Najpowszechniej znane i stosowane są dotychczas laminaty typu GLARE® (aluminium/kompozyt epoksydowo-szklany), które charakteryzują się wysokimi właściwościami np. zmęczeniowymi, statycznymi i odpornością na uderzenia typu impact. Jednoczesne oddziaływanie wielu negatywnych czynników w czasie eksploatacji sprawia, że parametry użytkowe tych materiałów stopniowo maleją. Jednym z czynników obniżających np. wytrzymałość statyczną jest oddziaływanie dynamiczne o niskiej prędkości. Uderzenia typu impact o niskiej prędkości często powoduje niewidoczne makroskopowo uszkodzenie struktury kompozytowej, która, absorbując energię uderzenia, ulega licznym rozwarstwieniom i pęknięciom osnowy. Laminaty metalowo-włókniste znacznie lepiej przenoszą obciążenia dynamiczne, ograniczając niekorzystne powstawanie pęknięć osnowy kompozytu, m.in. przez absorpcję części energii uderzenia na odkształcenie sprężysto-plastyczne. W celu oceny wpływu uderzeń typu impact na wytrzymałość materiałów, np. kompozytowych, prowadzi się badania m.in. ściskania osiowego płyt po uderzeniu (Compression After Impact). Znormalizowana próba CAI dotyczy klasycznych struktur kompozytowych o grubości około 5 mm. Jak wynika z literatury, nie jest jednak skuteczna w przypadku laminatów metalowo-włóknistych, szczególnie tych o grubościach od 1,1 mm. W pracy przedstawiono analizę możliwości prowadzenia efektywnej (zapewniającej prawidłową ocenę redukcji wytrzymałości) próby ściskania osiowego płyt FML o grubości 1,5 mm po uderzeniach dynamicznych. Zaproponowano własną konstrukcję stanowiska do badań oraz przeprowadzono symulację i weryfikację eksperymentalną. Zauważono, że rozwiązanie opracowane w normie ASTM nie sprawdza się w przypadku cienkich płyt FML. Następuje odkształcenie próbki w strefie oddalonej od miejsca uderzenia. W rezultacie wartości wytrzymałości nie różnią się względem siebie dla płyt bez uderzenia i po uderzeniu. Zaproponowana alternatywna konstrukcja uchwytu do realizacji testów CAI laminatów metalowo-włóknistych po uderzeniach dynamicznych eliminuje przedwczesne uszkodzenie materiału. Na podstawie przeprowadzonych symulacji numerycznych stwierdzono, że zastosowanie tego uchwytu prowadzi do wyboczenia materiału (pierwsza postać wyboczenia) w obszarze uszkodzenia, koncentrując naprężenia w jego okolicy. Taka forma odkształcenia może pozwolić prawidłowo ocenić wpływ uszkodzeń po uderzeniach na wytrzymałość kompozytów typu FML.
EN
The goal of this paper is to analyse damage in Fibre Metal Laminates, containing glass and carbon fibre reinforced composites, subjected to low-velocity impact. The analysis is based on the assessment of force-displacement characteristics in the aspect of energy absorption connected with initiation and damage propagation in the examined laminate. On the basis of experimental research and result analysis, it may be stated that: (1) Fibre Metal Laminates with glass and carbon fibres are characterized by higher impact resistance in comparison to classic composite structures. This assumption is proved by higher maximum load levels, as well as by higher aggregate absorbed impact energy. Moreover, the aluminium layers can have a protective function as they absorb a significant amount of dynamic impact energy and lower the scope of damage in the laminate. (2) Fibre Metal Laminates with carbon fibres show greater susceptibility to damage resulting from dynamic impact than laminates with glass fibres. The main factors influencing the impact resistance of the examined materials are the properties of particular components, especially the composite reinforcing fibres. Carbon fibres show a relatively small deformation range until failureand are brittle in comprison to glass ones, which raises their susceptibility to damage resulting from dynamic impact. (3) Force-displacement (F-d) analysis, aggregate absorbed impact energy (Ea) as well as initiation energy (Ei) and damage propagation (Ep) may represent some of the more vital criteria of composite materials assessment in terms of their resistance to low-velocity impact.
PL
Prezentowana praca ma na celu analizę zniszczenia laminatów metalowo-włóknistych zawierających kompozyt wzmacniany włóknem szklanym i węglowym poddanych uderzeniom dynamicznym poprzez ocenę charakterystyk siła-przemieszczenie w aspekcie absorbowanej energii związanej z inicjacją i propagacją zniszczenia lamiantu. Na podstawie badań eksperymentalnych oraz analizy wyników można stwierdzić że: (1) Laminaty metalowo-włókniste z włóknami szklanymi i węglowymi odznaczają się wyższą odpornością na uderzenia dynamiczne w porównaniu do klasycznych struktur kompozytowych. Świadczą o tym wyższe poziomy maksymalnego obciążenia oraz sumarycznej zaabsorbowanej energii uderzenia. Ponadto warstwy aluminium mogą pełnić rolę ochronną absorbując w znacznym stopniu energię uderzenia dynamicznego i zmniejszając ogólny poziom zniszczenia laminatu. (2) Większą podatność na zniszczenie poprzez uderzenia dynamiczne wykazują laminaty metalowo-włókniste z włóknami węglowymi w porównaniu do laminatów z włóknami szklanymi. Decydującym czynnikiem o odporności na uderzenie badanych materiałów jest charakterystyka poszczególnych komponentów, w szczególności włókien wzmacniających kompozyt. Włókna węglowe wykazują stosunkowo małe odkształcenie do zniszczenia i są kruche w porównaniu do szklanych, co zwiększa ich podatności na zniszczenie poprzez uderzenia dynamiczne (3) Analiza krzywych siła-przemieszczenia (F-d), sumaryczna zaab-sorbowana energia uderzenia (Ea) oraz energia inicjacji (Ei) i propagacji (Ep) zniszczenia mogą stanowić jedno z istotnych kryteriów oceny odporności materiałów kompozytowych na uderzenia dynamiczne o niskich prędkościach.
PL
W pracy przedstawiono wyniki badań wybranych właściwości wytrzymałościowych hybrydowych laminatów FML nowej generacji na bazie tytanu i kompozytu o osnowie epoksydowej wzmacnianego włóknem węglowym (HTCL). Charakteryzowano właściwości mechaniczne laminatów HTCL (wytrzymałość na rozciąganie, moduł Younga) i proces niszczenia w zależności od konfiguracji warstw w materiale kompozytowym. Laminaty HTCL charakteryzują się wysoką wytrzymałością na rozciąganie oraz modułem Younga. W porównaniu z tytanem otrzymano około 2,5-krotny wzrost wytrzymałości na rozciąganie kompozytu HTCL [0] oraz około 2-krotny w przypadku HTCL [0/90]. Głównymi czynnikami wpływającymi na właściwości laminatów HTCL są rodzaj komponentów oraz ukierunkowanie włókien wzmacniających. Zniszczenie laminatów HTCL wskazuje na złożoność procesu degradacji tych materiałów. Charakter zniszczenia w warstwach kompozytu polimerowego jest zbliżony do typowego dla tego rodzaju materiałów. Uzyskane kompozyty HTCL stanowią grupę materiałów hybrydowych o potencjalnym zastosowaniu m.in. w konstrukcjach lotniczych, gdzie mogą zastępować stopy metali czy tradycyjne kompozyty polimerowe wzmacniane włóknami.
EN
The article presents a study of selected mechanical properties of the nextgeneration of hybrid FML-laminates based on titanium and composites with carbon fiber reinforced epoxy (HTCL). The configuration of the layers in the composite material determines the mechanical properties of HTCL laminates (tensile strength, Young's modulus) and the destruction process. HTCL laminates are characterized by high tensile strength and Young’s modules. In comparison to titanium, about a 2.5 times increase in tensile strength for composite HTCL [0] was obtained and approximately 2-fold in the case of HTCL [0/90]. The main factors that influence the properties of HTCL laminates are the type of individual components – titanium, and carbon-epoxy composites and the orientation of the reinforcing fibers. The failure of HTCL laminates indicates the complexity process of degradation of these materials. The nature of damage in the polymer composite layers is similar to that typical for this type of materials. HTCL is a group of hybrid materials with potential uses including aircraft, often replacing traditional metal alloys or polymer composites reinforced with fibers.
EN
Composite materials have been developed in recent years. A new generation of structural composite materials for advanced aircraft is Fibre Metal Laminates (FML). They are hybrid composites consisting of alternating thin layers of metal sheets and fiber-reinforced composite material. FMLs have both low weight and good mechanical properties (high damage tolerance: fatigue and impact characteristics, corrosion and fire resistance). Quality control of materials and structures in aircraft is an important issue, also for Fibre Metal Laminates. For FML parts, a 100% non-destructive inspection for internal quality during the manufacturing process is required. In the case of FML composites, the most relevant defects that should be detected by non-destructive testing are porosity and delaminations. In this paper, a number of different non-destructive methods for the inspection of Fibre Metal Laminates were studied. The possibility of quality control of manufactured FML laminates - detection of defects as well as the procedures and processes are presented and discussed.
11
Content available remote Low velocity impact resistance of aluminium/carbon-epoxy fiber metal laminates
EN
Fiber metal laminates are a new kind of hybrid materials. There are good candidates for advanced aerospace structural applications due to their high specific mechanical properties. The study researches the resistance to low-velocity impact of hybrid laminates based on aluminum alloys and a carbon/epoxy composite (Al/CFRP). These are completely new materials which have higher strength properties compared to other materials of this type (GLARE, ARALL), high fatigue strength, low weight, etc. The tested laminates were prepared by the autoclave method, which provides the best possible and repeatable quality of the received components. The laminates were analysed in terms of a comparison of their impact resistance according to different layer configurations and different energy levels. The laminates response to low velocity impact using a hemispherical tipped impactor (diameter 12.7 mm) were analyzed. The variation of the impact load as a function of force-time for different layer systems at each energy level was determined. After the tests, the damage zone was evaluated by using ultrasonic and image analysis methods. On this basis the dependencies of the damage zone area and maximum depth of the deformation depending on the layer configurations and energy level were determined. It was noted that Al/CFRP laminates are innovative materials characterized by high impact damage resistance (at low-velocity) because of the superior properties of both metals and fibrous composite materials with strong adhesion bonding. There is a combination of high stiffness and strength from the carbon/epoxy composite layers and good mechanical, ductile properties from aluminum. Generally, specific parameters such as incipient load (Pi), peek load Pm, maximum depth and damage area increased with impact energy. For lower impact energies (up to 10 J) and the first stage of the impact process, minor matrix cracking and delamination in the polymer composite and at the aluminum/composite interface may be observed. However, as the impact energy increased, fiber failures were observed to be the dominant damage mode. The first crack of FMLs (on the back side) was connected with the fiber directions in the finally layer of the carbon epoxy composite. The ply configuration (fiber directions) in Al/CFRP laminates has been particularly important for their impact resistance. The FML with (0/90) and ((± 45) ply sequences in the carbon fiber reinforced composite have the best behavior followed by the (0) configuration.
PL
Laminaty metalowo-włókniste (FML) są nowoczesnymi materiałami hybrydowymi mającymi potencjalnie szerokie zastosowanie w technice lotniczej ze względu na wysokie właściwości mechaniczne (szczególnie wytrzymałość zmęczeniową, odporność na uderzenia). W pracy scharakteryzowano odporność na uderzenia (impact) przy niskiej prędkości laminatów metalowo-włóknistych na bazie stopu aluminium i kompozytu węglowo-epoksydowego (Al/CFRP). Materiały te, będące w sferze zainteresowań przemysłu lotniczego, powstały na podstawie prowadzonych badań i zastosowań innych laminatów FML (typu GLARE oraz ARALL). Badane laminaty Al/CFRP wytworzono metodą autoklawową, zapewniającą możliwie najwyższą i powtarzalną jakość otrzymanych elementów. Laminaty charakteryzowano pod kątem porównania ich odporność na impact w zależności od konfiguracji warstw [(0), (0/90), (± 45)] i energii uderzenia (10 J, 20 J, 25 J). Zastosowano urządzenie typu drop-weight oraz półsferyczny impactor o średnicy 12,7 mm (0,5"). Wyznaczono przebieg siły uderzenia w czasie, siłę maksymalną oraz siłę, przy jakiej występuje początek procesu zniszczenia materiału (Pi). Ocenie poddano także strefę zniszczenia metodami ultradźwiękowymi oraz technikami analizy obrazu. Określono obszar zniszczenia oraz głębokość odkształcenia w stosunku od układu warstw i energii uderzenia. Odnotowano, że laminaty Al/CFRP charakteryzują się wysoką odpornością na impact (przy niskich prędkościach uderzenia) związaną z właściwościami poszczególnych komponentów: sprężysto-plastycznego metalu i wysoką sztywnością kompozytu epoksydowo-węglowego. Wartości siły maksymalnej, inicjacji uszkodzenia, maksymalnego odkształcenia i strefy zniszczenia wzrastają wraz ze wzrostem energii uderzenia. Przy energiach nieprzekraczających 10 J odnotowano delaminacje pomiędzy aluminium i kompozytem oraz pękanie osnowy kompozytu polimerowego. Kierunek pękania badanego laminatu FML jest ściśle związany z kierunkiem ułożenia warstw w kompozycie polimerowym. Konfiguracja warstw kompozytu w laminacie Al/CFRP ma bezpośrednie znaczenie na odporność na impact. Laminaty (0/90) i (š45) charakteryzują się wyższą odpornością na impact w porównaniu do laminatów o jednokierunkowym ułożeniu warstw (0) w kompozycie epoksydowo-węglowym.
PL
Kompozyty typu FML to laminaty zbudowane z łączonych adhezyjnie cienkich warstw metalowych i kompozytów polimerowych wzmacnianych włóknami. Przeprowadzono analizy numeryczne, których celem było oszacowanie wpływu sposobu obciążenia takich materiałów na ich wytrzymałość oraz możliwości kształtowania części z nich metodą gięcia. Zniszczenie hybrydowych kompozytów warstwowych może polegać na przekroczeniu wytrzymałości doraźnej któregoś komponentu lub delaminacji spowodowanej odrywaniem lub ścięciem międzywarstwowym połączenia adhezyjnego. W obliczeniach numerycznych uwzględniono ortotropowe właściwości komponentu kompozytowego i sprężysto-plastyczne komponentu metalowego oraz siły adhezji między łączonymi warstwami badanego materiału. Niezbędne do obliczeń stałe materiałowe wyznaczono eksperymentalnie dla kompozytu typu Glare (adhezyjnie połączone warstwy stopu aluminium oraz kompozytu szklano-epoksydowego). Eksperymentalnie wyznaczono również wytrzymałość na odrywanie kompozytu szklano-epoksydowego od stopu aluminiowego, a na podstawie danych literaturowych oszacowano wytrzymałość na ścinanie syciwa epoksydowego. Analizowano naprężenia w kompozycie warstwowym obciążonym poprzez rozciąganie, zginanie oraz skręcanie. Stwierdzono, że przy skręcaniu takiego materiału może wystąpić zniszczenie polegające na delaminacji oraz że po przekroczeniu granicy plastyczności komponentu metalowego w trakcie rozciągania, obciążenia przenoszone są głównie przez komponent kompozytowy. Z obliczeń numerycznych wynika również, że praktycznie nie ma możliwości kształtowania części z materiałów typu Glare metodą gięcia. Na podstawie przeprowadzonych analiz można również stwierdzić, że modelowanie w obliczeniach numerycznych części wykonanych z kompozytów warstwowych elementami powłokowymi nie pozwala uwzględnić wszystkich mechanizmów możliwych zniszczeń takich materiałów.
EN
FML composites are laminates made of adhesively joined thin metal layers and reinforced with fibers composites polymers layers. Aim of numerical analysis was to estimate loading effect on strength of these materials and opportunities to change their shape with bending method. Hybrid composite can be destructed when ultimate strength would exceed in one of components or delamination caused tensile or interlayer shear of adhesive bonds. Conducted numerical analysis considered orthotropic composite properties, elastic-plastic metal properties and adhesive strength between surfaces of researched material. Composite Glare type (adhesively joined layers of aluminum alloy and glass-epoxy composite) properties (materials constants) were experimentally tested. Tensile strength of adhesive bond between glass-epoxy composite and metal alloy layers was experimentally determined as well. Shear strength of epoxy impregnate was taken from the literature. The stresses has been analysed in laminar composite loaded by tensile, bending and torsion. Analysis of torsion showed that dealmination between FML layers can be the result of destruction. The tensile analysis showed that if the stress in metal exceeds the yield point, the loads are transformed mainly by composite layers. Numerical calculations showed that Glare type composite cannot be formed by bending. Additionally, it may be concluded that numerical analysis, where FML type composites are modelled using only shell elements, does not reveal all their destruction mechanisms.
EN
Fibre Metal Laminates (FML) are hybrid materials, consisting of alternating layers of thin metal sheets and composite layers. FML possess superior properties of both metals and fibrous composite materials. Fibre Metal Laminates are characterized by excellent damage tolerance: fatigue and impact and characteristics, low density, corrosion and fire resistance. Glare as a type of FML are composites consisting of thin aluminium layers and glass fiber reinforced epoxy composites. The most common method used to produce FML including Glare is autoclave processing (under relatively high pressure, vacuum, elevated temperature). The first large scale application of Glare laminates is the fuselage and leading edges of the vertical and horizontal tail planes of the Airbus A-380 aircraft. Current and future research on FML is focused on generating new laminates, for example based on the combination of titanium and magnesium and carbon or glass polymer composites. In this paper, the preliminary studies concerning the manufacturing method and the properties of new generation hybrid composite materials - titanium/glass fibre reinforced laminates (Ti-G) are described. The titanium/glass composites were characterized from the standpoint of their quality (ultrasonic technique- phased array C-scan method), microstructure and selected mechanical properties (tensile strength). The hybrid Ti-G laminates were prepared by stacking alternating layers of commercially pure titanium (grade 2) and R-glass fiber/epoxy prepregs. The lay-up scheme of the Ti-G composites were 2/1 (two layers of titanium sheet and one layer of glass/epoxy prepreg as a [0,90] sequence) and 3/2. It was found that (1) manufacturing Fibre Metal Laminates including Ti-G composites using the autoclave technique is advantageous for the reason of obtaining higher quality and repeatability of the composite structures, (2) the titanium/glass fiber reinforced laminates demonstrated good bonding between the metal and composite layers and homogeneous structure without discontinuities, (3) manufactured Ti-G composites are characterized by high mechanical properties - tensile strength due to the excellent properties of both components, titanium and glass-fibre composite materials, (4) titanium/glass fiber reinforced laminates are new generation hybrid materials, which can be potentially used for composite structures in aerospace.
PL
Laminaty metalowo-włókniste (Fiber Metal Laminates) są materiałami hybrydowymi, składającymi się z kolejno ułożonych (na przemian) warstw metalu i kompozytu polimerowego. Laminaty FML łączą w sobie właściwości zarówno metalu, jak i materiału kompozytowego wzmacnianego włóknami. FML charakteryzują się wysoką tolerancją uszkodzeń, wysoką wytrzymałością zmęczeniową, odpornością na uderzenia, niską gęstością, odpornością na korozję oraz ognioodpornością. Laminaty Glare jako jeden z rodzajów FML stanowią kompozyty składające się z cienkich warstw aluminium oraz kompozytu polimerowego wzmacnianego włókami szklanymi. Najbardziej powszechną metodą wytwarzania laminatów FML, w tym Glare, jest technika autoklawowa (wysokie ciśnienie, podciśnienie, podwyższona temperatura). Pierwsze komercyjne zastosowanie laminatów typu Glare stanowią panele kadłuba oraz krawędzie natarcia pionowego i poziomego usterzenia ogonowego w samolocie Airbus A380. Zarówno aktualne, jak i przyszłe prace naukowo-badawcze w zakresie kompozytów FML ukierunkowane są na wytwarzanie nowej generacji laminatów zawierających tytan lub magnez, z kompozytami polimerowymi wzmacnianymi włóknami węglowymi oraz szklanymi. W pracy przedstawiono wstępne badania dotyczące metody wytwarzania oraz właściwości nowej generacji hybrydowych materiałów kompozytowych typu: tytan/kompozyt polimerowy wzmacniany włóknami szklanymi (Ti-G). Kompozyty tytan/włókna szklane charakteryzowano pod kątem jakości (badania nieniszczące ultradźwiękowe - metoda phased array C-scan), mikrostruktury oraz wybranych właściwości mechanicznych (wytrzymałość na rozciąganie). Hybrydowe laminaty Ti-G stanowiły warstwy czystego technicznie tytanu (garde 2) oraz kompozytu polimerowego wzmacnianego włóknami szklanymi typu R, w układzie 2/1 (dwie warstwy tytanu oraz jedna warstwa kompozytu o ułożeniu warstw [0/90]) oraz w układzie 3/2. Wykazano, że: (1) wytwarzanie kompozytów metalowo-włóknistych (FML) metodą autoklawową jest korzystne ze względu na wysoką jakość i powtarzalność struktur kompozytowych, (2) laminaty tytan/włókna szklane charakteryzują się dobrą przyczepnością metal-kompozyt oraz jednorodną strukturą bez widocznych nieciągłości, (3) wytworzone kompozyty Ti-G odznaczają się wysokimi właściwościami mechanicznymi - wytrzymałością na rozciąganie dzięki wysokim właściwościom poszczególnych komponentów: tytanu i kompozytu polimerowego wzmacnianego włóknami szklanymi, (4) kompozyty tytan/włókna szklane stanowią nową generację materiałów hybrydowych, które mogą znaleźć potencjalne zastosowanie w przemyśle lotniczym.
PL
W pracy przedstawiono badania wybranych właściwości powierzchni metalowych (stopu aluminium 2024T3 oraz czystego technicznie tytanu) w laminatach metalowo-włóknistych FML (Fibre Metal Laminates) - analiza strukturalna, chropowatość, badania energii powierzchniowej - w zależności od zastosowanego sposobu przygotowania powierzchni (anodowanie). Wytworzone warstwy anodowe charakteryzują się jednorodną strukturą, wysoką jakością i bardzo dobrym połączeniem z materiałem podłoża. Wyznaczone właściwości fizykochemiczne (kąt zwilżania oraz swobodna energia powierzchniowa) z zastosowanymi modyfikacjami powierzchni - anodowania, wskazują na możliwość otrzymania warstwy wierzchniej o dobrych właściwościach adhezyjnych w układzie metal/kompozyt polimerowy. Wstępne badania wytrzymałościowe laminatów FML stop aluminium/kompozyt polimerowy oraz ocena adhezji metal/kompozyt potwierdzają uzyskanie laminatów o bardzo dobrych właściwościach adhezyjnych i wytrzymałościowych połączenia poszczególnych komponentów.
EN
The paper presents the results of the studies of metallic surfaces properties (2024 T3 aluminum alloy and technically pure titanium) in Fibre Metal Laminates (the structural analysis, roughness, surface energy measurements) depending on applied method of the surface pretreatment (anodizing). The anodizing layers are characterized a homogeneous structure, high quality and a very good bonding with a substrate material. Particularly the designated physical-chemical properties and the (a contact angle and a surface free energy) with applying surface modifications - anodizing, indicates for possibility to obtain a state of the surface layer with good adhesion properties in the metal/polymer composite configuration. The preliminary strength studies of the FML laminates aluminum alloy polymer composite and the metal/composite adhesion assessment were confirmed by obtaining the laminates with high adhesive properties and strength bonding in particular components.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.