Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  few-shot learning
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Accurate and efficient COVID-19 diagnosis is crucial in clinical settings. However, the limited availability of labeled data poses a challenge for traditional machine learning algorithms. To address this issue, we propose Turning Point (TP), a few-shot learning (FSL) approach that leverages high-level turning point mappings to build sophisticated representations across previously labeled data. Unlike existing FSL models, TP learns using quasi-configured topological spaces and efficiently combines the outputs of diverse TP learners. We evaluated TPFSL using three COVID-19 datasets and compared it with seven different benchmarks. Results show that TPFSL outperformed the top-performing benchmark models in both one-shot and five-shot tasks, with an average improvement of 4.50% and 4.43%, respectively. Additionally, TPFSL significantly outperformed the ProtoNet benchmark by 12.966% and 11.033% in one-shot and five-shot classification problems across all datasets. Ablation experiments were also conducted to analyze the impact of variables such as TP density, network topology, distance measure, and TP placement. Overall, TPFSL has the potential to improve the accuracy and speed of diagnoses for COVID-19 in clinical settings and can be a valuable tool for medical professionals.
2
Content available A few-shot fine-grained image recognition method
EN
Deep learning methods benefit from data sets with comprehensive coverage (e.g., ImageNet, COCO, etc.), which can be regarded as a description of the distribution of real-world data. The models trained on these datasets are considered to be able to extract general features and migrate to a domain not seen in downstream. However, in the open scene, the labeled data of the target data set are often insufficient. The depth models trained under a small amount of sample data have poor generalization ability. The identification of new categories or categories with a very small amount of sample data is still a challenging task. This paper proposes a few-shot fine-grained image recognition method. Feature maps are extracted by a CNN module with an embedded attention network to emphasize the discriminative features. A channel-based feature expression is applied to the base class and novel class followed by an improved cosine similarity-based measurement method to get the similarity score to realize the classification. Experiments are performed on main few-shot benchmark datasets to verify the efficiency and generality of our model, such as Stanford Dogs, CUB-200, and so on. The experimental results show that our method has more advanced performance on fine-grained datasets.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.