Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  fetal echocardiography
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Treating dataset imbalance in fetal echocardiography classification
EN
Deep learning has been a trending topic during the last few years, notably in medical imaging that employs neural networks for image manipulation, computer-aided detection of diseases, and many other tasks depending on the clinical practices. One possible application that would benefit from these methods is the fetal cardiac view classification, where these different views are useful to obtain valuable information about the patient's heart development. A trained network could help reduce variance in interpretation and speed up data annotation. Alas, in this context we can face two challenges: datasets may contain a lot of information not relevant to the outcome of the classifier's training, and the view classes may be unbalanced in the sense that certain classes may have much more samples than others. This paper presents a series of attempts to solve these issues and can be used as a practical guide for training viable classifiers in this context.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.