Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  fermenter
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Wpływ częstości mieszania na skład i produkcję biogazu w fermentatorze
PL
Zbadano wpływ intensywności mieszania na produkcję i skład biogazu w reaktorze do fermentacji metanowej o pojemności czynnej 75 L przy czasie retencji mieszaniny fermentacyjnej w reaktorze równym 12 dni. Zastosowano trzy warianty 5-minutowych cykli mieszadła łopatkowego i zakresie 20–40-minutowych cykli jego wyłączania. Największą produkcję biogazu uzyskano dla wariantów z 40-minutowymi cyklami wyłączania mieszadła, średnio 35 L/d. Skracając czas wyłączania mieszania do 20 min, uzyskano najwyższe wartości dobowe dla zawartości metanu w biogazie, średnio ok. 67,4%, i najniższe stężenie siarkowodoru 1564 ppm.
EN
Three operational variants based on 5 min long mixing of the fermenter content (75 L) with an agitator and then 20–40 min long cycles of its switching off were used to det. the effect of mixing method on biogas prodn. in a 12 days long process. The highest biogas „yield“ (35 L/day) was achieved for the variant with 40 min long cycle of the switched off agitator while the highest MeH content and lowest H2S content in the biogas (67.4% and 1564 ppm, resp.) were achieved for the variant with 20 min long cycle of the switched off agitator.
EN
Introduction: The introduction to this paper deals with the question of defining fire-prevention distances for constructions in a modern energy enterprise operating on alternative energy sources, which can also simultaneously produce gas, electricity and heat from agricultural waste. The purpose, object and subject of the research are defined, and the basic methods used during the scientific work are presented. The analysis of the process of biogas production technology, which includes the indication of the most dangerous technological structure in the biogas production complex also involves an analysis of the existing means of fire protection, including the main technological equipment. Methods: The first part of the article gives a general description of the object, its constructive elements and scenarios of the emergence of a hazardous situation, which can lead to a fire or explosion in the fermenters. The effect of the size of the hole through which the gas flows and burns on the diameter of the flame and its temperature, creating a hazard for adjacent structures, was investigated. The results of calculations of the excess pressure of the explosion of biogas in the fermenter, which can occur as a result of an emergency situation, are demonstrated. The integrity of the fermenter elements was determined in the conditions of an excess explosion pressure, and the effect of the excess explosion pressure on the calculation of safe distances was demonstrated. The main part of the article defines the type of deformation in the main structural elements of the most dangerous structure in the complex (complete or partial destruction or damage) and, to a reasonable extent, the consequences to which this destruction can lead. The effect of the size of the hole through which the gas flows and burns on the diameter of the flame and its temperature, which creates a hazard for adjacent structures, was investigated. Using the “FlowVision 2.5” software packages and “MathCaD” software suites, the schemes of impact of the main forces on the elements of the fermenter’s biogas plants and the graphical models of the development of combustion in the fermenter during a possible fire, including the initial stage of burning and the fire climax, are presented. Based on the results of calculations for the scenario of the most dangerous accident, the maximum possible values of the height and radius of the flame, the cross-sectional area of the flame and the flame temperature are determined. The algorithm for calculating the safe distances between fermenters for the production of biogas is given. A justification for the minimum fire distances between the fermenters for the safe operation of the biogas production is given. Results and conclusions: The final part contains the main results of the research, in particular, of the actual scientific and practical task of ensuring explosion safety in biogas production. Furthermore, the method of estimating the safe distances between the fermenters for biogas production is substantiated. Conclusions on the results of scientific work are presented and a list of literary sources used by the authors is indicated.
PL
Wprowadzenie: We wprowadzeniu do artykułu zawarto opis kwestii ustalenia przeciwpożarowych odstępów dla urządzeń współczesnego przedsiębiorstwa energetycznego, funkcjonującego na alternatywnych źródłach energii, a także jednocześnie produkującego gaz, elektryczność i ciepło drogą przetwarzania odpadów gospodarstwa rolnego. Określono cel, obiekt i przedmiot badań, a także przytoczono główne metody wykorzystane w czasie prowadzenia pracy naukowej. Przytoczono analizę procesu technologii produkcji biogazu, uwzględniającą ustalenie najbardziej niebezpiecznego technicznego urządzenia kompleksu do produkcji biogazu. Metody: W pierwszej części artykułu przytoczono ogólny opis obiektu, jego elementów konstrukcyjnych oraz scenariusze zaistnienia niebezpiecznej sytuacji, które mogą doprowadzić do pożaru lub wybuchu w komorze fermentacyjnej. Przytoczono rezultaty wyliczeń nadmiernego ciśnienia wybuchu biogazu w fermentatorze, które mogą pojawić się w rezultacie sytuacji awaryjnej. Określono całość elementów fermentatora pod działaniem nadmiernego ciśnienia wybuchu. Ustalono, że obliczeniowe nadmierne ciśnienie wybuchu nie wpływa na określenie bezpiecznych odstępów przeciwpożarowych między fermentatorami. W głównej części artykułu określono typ deformacji dla głównych elementów konstrukcji najbardziej niebezpiecznego urządzenia kompleksu (całkowite zniszczenie lub częściowe uszkodzenie). Zbadano wpływ rozmiaru otworu, przez który wypływa i płonie gaz, na średnicę pochodni i temperaturę płomienia, stwarzającego niebezpieczeństwo dla urządzeń sąsiednich. Przy pomocy kompleksów programowych „FlowVision 2.5” i „MathCaD” opracowano i przytoczono schematy wpływu sił mechanicznych na elementy konstrukcji fermentatora do produkcji biogazu, a także przytoczono graficzne modele rozwoju palenia się fermentatora w czasie możliwego pożaru, włączającego początkowy etap palenia się i kulminacyjny moment pożaru. Na podstawie rezultatów wyliczeń według scenariusza najniebezpieczniejszej awarii obliczono najbardziej prawdopodobną wartość pola przekroju pochodni i temperatury płomienia i przytoczono algorytm wyliczeń dla określenia bezpiecznych odległości miedzy fermentatorami. Uzasadniono minimalną wartość odstępów przeciwpożarowych między fermentatorami dla bezpiecznej eksploatacji kompleksu do produkcji biogazu. Wyniki i wnioski: W części końcowej przytoczono główne rezultaty badań, przede wszystkim rozwiązano aktualne naukowo-praktyczne zadanie zapewnienia bezpieczeństwa pożarowego i wybuchowego dla produkcji biogazu, a także uzasadniono metodykę szacunkowej oceny bezpiecznego odstępu między fermentatorami do produkcji biogazu. Przytoczono wnioski z rezultatów pracy naukowej i listę wykorzystanych przez autorów źródeł literatury.
PL
Na przestrzeni wieków bioreaktory zmieniały swój kształt oraz znajdowano dla nich kolejne zastosowania. Najpopularniejsze i zarazem najstarsze obejmowały technologię żywności. Dziś bioreaktory są powszechnie wykorzystywane w celu poprawy jakości środowiska naturalnego. Biologiczny etap oczyszczania ścieków jest sercem każdej nowoczesnej oczyszczalni ścieków bytowo-gospodarczych. Bioreaktory wykorzystuje się również w celu produkcji biogazu, bioremediacji gruntów oraz oczyszczania gazów przemysłowych. W niniejszym artykule omówiono podstawowe typy bioreaktorów oraz przykłady ich wykorzystania w szeroko pojętej inżynierii środowiska. Nieustający rozwój nauk technicznych i podstawowych prowadzi do powstawania kolejnych pomysłów na wykorzystanie czynników biologicznych w celu neutralizacji ryzyka związanego z działalnością antropogeniczną. Przed inżynierią bioreaktorów stoją nowe wyzwania i zarazem olbrzymi potencjał rozwoju.
EN
In past centuries bioreactors were changing their shape and their applications were developing. The most common and the oldest applications contained food technology. Today, bioreactors are commonly used for increasing the quality of environment. Biological part of treatment is the heart of each domestic wastewater treatment plant. Bioreactors are also used for biogas production, bioremediation techniques or exhaust purification. In this paper we would like to present the idea of bioreactor methods and selected examples of their application in environmental protection. The ceaseless development of basic and technical science is creating innovative ideas for application of bioreactors for changing the quality of environment. New challenges and great potential is still waiting to be proved in research institutions.
4
Content available remote Anaerobic moving bed biofilm fermenter for biogas production
EN
On of the most promising technologies in the disposal of agro-industrial organic wastes is biodegradation under anaerobic circumstances. The major, profitable product of anaerobic degradation is biogas, from the environmental aspect a renewable resource. To enhance biogas production and produce a methane-rich final product an integrated anaerobic membrane bioreactor filled with moving biofilm carriers was designed. In this study, the intensification of anaerobic fermenter was investigated by using polyvinyl-alcohol (PVA) gel beads as biofilm carriers. The solid retention time can be increased by attaching microorganisms to PVA-gel beads and as a result the efficiency of biogas production can be improved. Two laboratory-scale anaerobic fermenters were run in parallel, one with biofilm carriers and one without. The results showed that, compared to the control system, in the carrier-filled fermenter the efficiency of biogas production was enhanced by 28% as a result of the biofilm formation on the surface of the carriers. In addition, the COD concentration of the effluent was decreased by 80-88%, 10% more than in the control reactor.
PL
Deacetylaza chitynowa może być użytecznym narzędziem w produkcji chitozanu o niskich stopniach acetylacji oraz wysokich masach cząsteczkowych. W prezentowanej pracy przedstawiono wyniki modelowania enzymatycznej deacetylacji chitozanu prowadzonej w reaktorze okresowym. Pokazano, wpływ uwzględnienia inhibicji produktem oraz dezaktywacji termicznej na model oraz porównano zaproponowane modele z danymi doświadczalnymi.
EN
Chitin deacetylase is an enzyme that can be useful for enzymatic deacetylation of chitin. Kinetic models with and without product inhibition and thermal deactivation of chitin deacetylase were tested and compared with the experimental data obtained in a batch reactor. It was shown that the system is more sensitive to enzyme deactivation than to product inhibition.
EN
Methane fermentation is a biotechnology capable of converting many types of waste biomass (including polymeric materials) to methane and carbon dioxide under anaerobic conditions. The aim of this work was to choose and verifies appropriate sensors for measuring methane and carbon dioxide concentrations in middle-sized laboratory fermenter during anaerobic bioprocesses. There were chosen two sensors based on infra-red spectrophotometry measurement procedure, which require specific arrangement of gas measurement loop. In this paper is described development in designing and testing of this loop under anaerobic conditions. Results and experiences of several carried experiments are included in this paper.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.