The paper presents an approach to classification of audio data using properties derived from low-level features. The new descriptors based on peakiness of the feature trajectory, and the crossing points between two selected trajectories. Calculated features are exploited in wrapper-based selection process and Support Vector Machines are employed to the speech/music classification problem. The obtained results show that proposed approach can be applied to perform audio classification in efficient manner.
PL
Podejście do klasyfikacji akustycznej przedstawione w pracy wykorzystuje charakterystykę zmienności cech niskopoziomowych. Wykorzystano własności występowania szczytów w trajektoriach cech oraz własności punktów przecięć pomiędzy dwoma wybranymi trajektoriami cech. Uzyskane w ten sposób deskryptory poddano selekcji z użyciem algorytmu wykorzystującego maszyny wektorów nośnych SVM dla problemu klasyfikacji sygnałów mowy i muzyki. Pokazano, że proponowane podejście i użyte cechy pozwalają uzyskać wysoką skuteczność klasyfikacji.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.