Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  fault recovery
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This paper presents a fault tolerant position tracking controller for a hexarotor system. The proposed controller has a cascaded structure composed of a position and an attitude control loop. The nominal controller is augmented by an adaptive control allocation which compensates for faults and failures within the propulsion system without reconfiguration of the controller. Simultaneously, it is able to implement a degraded control strategy which prioritizes specific control directions in the case of extreme degradation. The main contribution is a controller that is a step closer to application scenarios by including outdoor GPS-based flight tests, onboard computation and the handling of unknown degradation and failure of any rotor.
EN
A Distributed Sensor Network (DSN) consists of a set of sensors that are interconnected by a communication network. DSN is capable of acquiring and processing signals, communicating, and performing simple computational tasks. Such sensors can detect and collect data concerning any sign of node failure, earthquakes, floods and even a terrorist attack. Energy efficiency and fault-tolerance network control are the most important issues in the development of DSNs. In this work, two methods of fault tolerance are proposed: fault detection and recovery to achieve fault tolerance using Bayesian Networks (BNs). Bayesian Network is used to aid reasoning and decision making under uncertainty. The main objective of this work is to provide fault tolerance mechanism which is energy efficient and responsive to network using BNs. It is also used to detect energy depletion of node, link failure between nodes, and packet error in DSN. The proposed model is used to detect faults at node, sink and network level faults (link failure and packet error). The proposed fault recovery model is used to achieve fault tolerance by adjusting the network of the randomly deployed sensor nodes based on of its probabilities. Finally, the performance parameters for the proposed scheme are evaluated.
3
Content available remote Fault monitoring and fault recovery control for position-moored vessels
EN
This paper addresses fault-tolerant control for position mooring of a shuttle or floating production storage and offloading vessels. A complete framework for fault diagnosis is presented. A loss of a sub-sea mooring line buoyancy element and line breakage are given particular attention, since such failures might cause high-risk abortion of an oil-loading operation. With significant drift forces from waves, non-Gaussian elements dominate forces and the residuals designed for fault diagnosis. Hypothesis testing is designed using dedicated change detection for the type of distribution encountered. A new position recovery algorithm is proposed as a means of fault accommodation in order to keep the mooring system in a safe state, despite faults. The position control is shown to be capable of accommodating serious failures and preventing breakage of a mooring line, or a loss of a buoyancy element, from causing subsequent failures. Properties of the detection and fault-tolerant control algorithms are demonstrated by high fidelity simulations.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.