Facial recognition has been one of the most intriguing and exciting research topics over the last few years. It involves multiple face-based algorithms such asfacial detection, facial alignment, facial representation, and facial recognition. However, all of these algorithms are derived from large deep-learning architectures, leading to limitations in development, scalability, accuracy, and deployment for public use with mere CPU servers. Also, large data sets that contain hundreds of thousands of records are often required for training purposes. In this paper, we propose a complete pipeline for an effective face-recognition application that requires only a small data set of Vietnamese celebrities and a CPU for training, solving the problem of data leakage, and the need for GPU devices. The pipeline is based on the combination of a conversion algorithm from face vectors to string tokens and the indexing & retrieval process by Elasticsearch, thereby tackling the problem of online learning in facial recognition. Compared with other popular algorithms on the same data set, our proposed pipeline not only outperforms the counterpart in terms of accuracy but also delivers faster inference, which is essential to real-time applications.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Identyfikatory naturalne są najstarszym i zarazem najdynamiczniej rozwijanym środkiem weryfikacji tożsamości człowieka. Rozwój ten dotyczy zwłaszcza zaawansowanych technik biometrycznych z elementami sztucznej inteligencji. W artykule zostały przedstawione - na tle innych środków identyfikacji człowieka - podstawowe zasady weryfikacji tożsamości na podstawie wizerunku twarzy.
EN
Natural means of identification are the oldest and most dynamically developed ways of verifying human identity. Their development concerns in particular advanced biometric techniques with elements of artificial intelligence. This article presents - against the background of other means of human identification - the basic principles used to verify identity based on the image of the face.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Do budowy demonstratora wykorzystano aplikację "Multiple face detection and recognition in real time". Jest ona łatwa w instalacji i obsłudze. Bez problemu wykrywa każdą kamerę USB podłączoną do komputera. Dzięki możliwości zmiany kodu możliwe jest dopasowanie rozdzielczości w aplikacji do tej, którą obsługuje kamera.
EN
For the construction of the demonstrator the multiple face detection and recognition in real time application was used. It is easily installable and very handy; it tracks down all USB cameras connected to the computer with no problem. Thanks to the possibility of code changing you can match application resolution to the one being in operation in the camera.
This article focuses on the problems encountered when using face observation and emotion recognition for the purposes of identification and also classification of specific emotions. The identification of emotions are particularly difficult, especially within varying scenes. In this paper we review the main methods of the identification of certain emotions. The authors present the results of their research analysis in tracking changes of the emotions in the selected software packages.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.