Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  external cavity
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote External cavity wavelength tunable semiconductor lasers : a review
EN
External cavity tunable lasers have been around for many years and now constitute a large group of semiconductor lasers featuring very unique properties. The present review has been restricted to the systems based on the edge emitting diode lasers set-up in a hybrid configuration. The aim was to make the paper as concise as possible without sacrificing, however, most important details. We start with short description of the fundamentals essential for operation of the external cavity lasers to set the stage for explanation of their properties and some typical designs. Then, semiconductor optical amplifiers used in the external cavity lasers are highlighted more in detail as well as diffraction gratings and other types of wavelength-selective reflectors used to provide optical feedback in these lasers. This is followed by a survey of designs and properties of various external cavity lasers both with mobile bulk gratings and with fixed wavelength selective mirrors. The paper closes with description of some recent developments in the field to show prospects for further progress directed towards miniaturization and integration of the external cavity laser components used so far to set-up hybrid systems.
EN
A self-mixing interferometer is proposed to measure nanometre-scale optical path length changes in the interferometer's external cavity. As light source, the developed technique uses a blue emitting GaN laser diode. An external reflector, a silicon mirror, driven by a piezo nanopositioner is used to produce an interference signal which is detected with the monitor photodiode of the laser diode. Changing the optical path length of the external cavity introduces a phase difference to the interference signal. This phase difference is detected using a signal processing algorithm based on Pearson's correlation coefficient and cubic spline interpolation techniques. The results show that the average deviation between the measured and actual displacements of the silicon mirror is 3.1 nm in the 0-110 nm displacement range. Moreover, the measured displacements follow linearly the actual displacement of the silicon mirror. Finally, the paper considers the effects produced by the temperature and current stability of the laser diode as well as dispersion effects in the external cavity of the interferometer. These reduce the sensor's measurement accuracy especially in long-term measurements.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.