Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 80

Liczba wyników na stronie
first rewind previous Strona / 4 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  explosive welding
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 4 next fast forward last
EN
In order to study the interface microstructure and formation mechanism of nickel (Ni) foil/steel Q235 (Ni/Q235) explosive composite plate, Ni/Q235 laminated composite was successfully prepared by explosive welding technology using Ni foil, Q235 steel plate as substrate and composite plate. respectively. The microstructure of the bonding interface was analyzed by SEM and EDS. The mechanical properties of the interface were tested by tensile tests. The explosive welding process was simulated by the smooth particle fluid dynamics (Smoothed Particle Hydrodynamics, SPH) numerical simulation method. The results showed that the interface of the Ni/Q235 explosive composite plate had regular wave-like bonding, and there were no defects, such as unbonding and local melting at the bonding interface. The tensile strength of the tensile specimen reached 623 MPa, and the Ni layer and the Q235 layer on either side of the tensile specimen fracture exhibited a mainly plastic fracture. The numerical simulation results were in good agreement with the experimental results, which can provide theoretical support for the study of the explosive welding preparation of Ni/Q235 double-layer composite plate and the bonding mechanism of its connection interface.
EN
The processes of rolling and annealing of explosively welded multi-layered plates significantly affect the functional properties of the composite. In current research, fifteen-layered composite plates were fabricated using a single-shot explosive welding technique. The composites were then rolled up to 72% to reduce layer thickness, followed by annealing at 625 °C for varying times up to 100 h. Microstructure evolution and chemical composition changes were investigated using scanning electron microscopy equipped with energy-dispersive spectroscopy. The mechanical properties of the composite were evaluated by tensile testing, while the strengths of individual layers near the interface were evaluated by micro-hardness measurements. After explosive welding, the wavy interfaces were always formed between the top layers of the composite and the wave parameters decreasing as the bottom layers approach. Due to the rolling process, the thickness of Ti and Al layers decreases, and the waviness of top interfaces disappeared. Simultaneously, the necking and fracture of some Ti layers were observed. During annealing, the thickness of layers with chemical composition corresponding to the Al3Ti phase increased with annealing time. A study of growth kinetic shows that growth is controlled by chemical reaction and diffusion. The results of micro-hardness tests showed that after annealing, a fourfold increase of hardness can be observed in the reaction layers in relation to the Ti, while in relation to Al, the increase of hardness is even 15 times greater.
EN
Melted zones, microcracks, shear bands, and elastic incompatibility of explosively welded materials are features that may initialize cracks at the interface and reduce fatigue strength. This study aims to determine the effect of interfacial defect-like structures on the fatigue strength of explosively welded corrosion-resistant plates. Cyclic axial loading was applied to seven distinct layer-by-layer compositions of Ti Gr 1, Zr 700 alloys, and carbon steels. The interfacial wave height as a metric of potential fatigue life influencing factors along with measured strain amplitude was applied as the input quantities for the Machine Learning based model, i.e. the Gaussian process for regression (GPR). This is a novel and successful application of GPR to estimate the effect of interfacial wave height on the fatigue life of explosively welded plates. For the first time, the effect of the interface feature on fatigue life was estimated quantitatively. The Digital Image Correlation technique was applied to measure the field of cyclic strain for the purpose of verifying if a single strain amplitude is representative of a heterostructured plate. It was found that interfacial wave height is an important feature and its increase by 100 µm reduces the fatigue life of analysed plates by 36%. Additionally, to validate the applicability of explosively welded plates to engineering structures under cyclic loading, the experimental fatigue lives were compared with the design curve of the American Society of Mechanical Engineers (ASME) code.
EN
Platinum/titanium (Pt/Ti) bimetal composite is of utmost interest to the electrochemical industry for its superior functionality. Here, an improved explosive welding (EW) technology was introduced to join Pt foil and Ti sheet, and the microstructure evolution of the achieved Pt/Ti joint as well as the thermodynamic behaviors during the EW process was systematically investigated by various microscopic observations and smoothed particles hydrodynamics (SPH) simulation. It was found that the Pt/Ti EW interface was featured by a straight metallurgical reaction layer with a width of ~ 30 μm, and its formation mechanism was related to localized melting followed by intense mechanical mixing of participant metals. In the reaction layer, both elements of Pt and Ti were detected, and the average phase was determined to be Pt0.69Fe0.31. The EBSD analyses revealed a remarkable grain structure change near the interface, such as grain orientation deflection in Pt matrix, heat-induced grain growth in Ti matrix, and the formation of extra fine nanograins in the reaction layer. The SPH simulation well captured the morphology features of the Pt/Ti interface, and quantificationally revealed the extreme thermodynamic states of high heat of ~ 2000 K, high pressure of ~ 5 GPa, and large strain of ~ 3 during the EW process. Finally, the nanoindentation results revealed inhomogenous mechanical behaviors near the bonding interface.
EN
Explosive welding of copper C10200 to aluminium alloy AW 5083 was performed. C10200 was proposed as a flyer plate due to its suitable plastic properties. A parallel layout of welded metals was selected to attain a more stable welding process. Welding parameters and conditions were determined. The surfaces of both materials were mechanically machined and degreased prior to welding which was performed using Semtex S30. The bimetals were characterized by a regular wavy interface. The aim of the research was to establish the influence of heat treatment on both the structure and microhardness at the interface of the explosively welded bimetal Al-Cu. Heat treatment was performed at 250, 300 and 350 °C over 2, 3 and 4 h. After heat treatment, an increase in Inter Metallic Compounds (IMC) was observed, proportional to the increasing temperature. An analysis of chemical composition carried out by EPMA (Electron Probe Micro Analysis) confirmed the presence of Inter Metallic Phases (IMP) such as θ (Al2Cu), η2 (Al2Cu), ξ2 (Al3Cu4), δ (Al2Cu3), γ1 (A14Cu9). The microhardness decreased after the heat treatment in the bimetal but significantly increased at the interface as a consequence of IMC formation.
PL
Wykonano zgrzewanie wybuchowe stopu aluminium miedź C10200 i AW 5083. C10200 został zaproponowany jako płyta napędzana ze względu na jego odpowiednie właściwości plastyczne. Wybrano równoległy układ zgrzewanych metali, aby uzyskać bardziej stabilny proces łączenia. Określono parametry i warunki łączenia. Powierzchnie obu materiałów zostały poddane obróbce mechanicznej i odtłuszczeniu przed zgrzewaniem wykonanym przy użyciu Semtex S30. Bimetale charakteryzowały się regularną falistą powierzchnią styku. Celem badań było określenie wpływu obróbki cieplnej zarówno na strukturę, jak i mikrotwardość na granicy faz bimetalu Al-Cu zgrzewanego wybuchowo. Obróbkę cieplną przeprowadzono w 250, 300 i 350 °C przez 2, 3 i 4 godziny. Po obróbce cieplnej zaobserwowano wzrost związków międzymetalicznych (IMC), który był proporcjonalny do wzrostu temperatury. Analiza składu chemicznego przeprowadzona przez EPMA (Electron Probe Micro Analysis) potwierdziła obecność IMP takich jak θ (Al2Cu), η2 (AlCu), ξ2 (Al3Cu4), δ (Al2Cu3), γ1 (Al4Cu9). Mikrotwardość zmniejszyła się po obróbce cieplnej w bimetalu, ale znacznie wzrosła na granicy faz w wyniku tworzenia IMC.
EN
Electron Backscatter Diffraction (EBSD) is a scanning electron microscope (SEM) based technique, which enables a sample’s microstructure to be analysed, visualised and quantified. The EBSD method together with associated techniques provides useful information how to interpret the obtained results. Microstructure is the internal structure of a material investigated on the microscopic scale. It is of interest because a material’s internal features (i.e. structure) influences its properties and behaviour. The EBSD method has become the primary tool for characterising microstructures in most metals, alloys, composites and ceramics. The range of applications is numerous, from rapid measurement of grain size and texture in metal sheets, welded joints etc. Many of these materials are relatively simple to analyse using EBSD, but advanced tools such as high-resolution pattern correlation approaches can be applied to improve our understanding of these materials [1]. This method has been applied to investigace the structure of Al ‒ austenitic CrNi steel. Only partial results as for the EBSD method will be given here.
PL
Detektor EBSD (dyfrakcja elektronów wstecznie rozproszonych) zainstalowany w skaningowym mikroskopie elektronowym (SEM) umożliwia analizę, wizualizację i ocenę ilościową mikrostruktury próbki. Metoda EBSD wraz z powiązanymi technikami dostarcza przydatnych informacji, umożliwiających interpretację wyników. Mikrostruktura to wewnętrzna struktura materiału badana w skali mikroskopowej. Jest ona interesująca, ponieważ wewnętrzne cechy materiału (tj. struktura) determinują jego właściwości. Metoda EBSD stała się podstawowym narzędziem do charakteryzowania mikrostruktur w większości metali, stopów, kompozytów i ceramiki. Zakres zastosowań jest szeroki, obejmujący m.in. szybki pomiaru wielkości ziarna i tekstury w blachach, złączach spawanych itp. Wiele z tych materiałów można stosunkowołatwo poddać analizie EBSD, ale zaawansowane narzędzia, takie jak metody operate o analizę obrazu, można zastosować w celu lepszego poznania struktury tych materiałów [1]. Metodę tę zastosowano do badania struktury bimetalu typu aluminium-stal austenityczna CrNi. W tym miejscu omówione jedynie częściowe wyniki analizy EBSD.
EN
The last two decades have brought stable and impressive development accompanied by the industry acceptance of the use of high energy techniques based on energy obtained from explosive detonation energy. Such manufacturing processes are not only commercially viable, but also allow complex product shapes and unique combinations of metal sheets in terms of materials to be obtained; they enable the creation of composites which cannot be obtained by other conventional methods. Plated sheets are composed of a base material and a thinner plating material layer. An essential aspect in the validation of explosive welding is the quality control of joints made using this technology. The basic control methods are destructive tests – mainly metallographic, which reveal the microstructure at the connection boundary. Non-destructive tests, used in industrial practice, are classical, normalised ultrasonic tests of welding joints, conducted in accordance with ISO 17640:2017 and ISO 11666:2018 standards. Due to the relatively low thickness of the explosion-tested layers (2 mm and 3 mm single layers), which is the object of this study, assessing them using widely available ultrasonic techniques is limited. According to current scientific studies, the application of the scanning acoustic microscopy (SAM) is a prospective non-destructive method allowing for the qualitative and quantitative assessment of the continuity of the metallic connection on the contact surface of two materials. This paper presents the results of research on the quality of clads, welded explosively using a non-destructive research technique, namely SAM, verified with metallographic tests.
PL
W niniejszej pracy opisano wpływ obróbki cieplnej na własności wytrzymałościowe pięciu różnych materiałów platerowanych metodą zgrzewania wybuchowego. W przypadku wszystkich platerów materiałem podstawowym była stal węglowa SA-516 Gr.70 o grubości 10 mm, zaś materiałami nakładanymi były: stale austenityczne (316L oraz 254SMO), super-duplex (SAF2507) oraz stopy niklu (alloy 625 i C-276) o grubości 3 mm. W przypadku wszystkich materiałów przeprowadzono obróbkę cieplną, a dokładniej wyżarzanie odprężające w celu zniwelowania naprężeń własnych powstałych przez proces platerowania wybuchowego. W ramach statycznych badań wytrzymałościowych przeprowadzono: próbę zginania, ścinania, rozciągania, jak również udarność. Wszystkie badania wykonano według amerykańskich norm ASTM SA-264 i ASTM SA-265. Dodatkowo wykonano również rozkład twardości oraz badania makroskopowe, podczas których zmierzono parametry złączy oraz równoważną grubość przetopień (RGP).
EN
The paper describes the effect of heat treatment on strength properties of five different clad explosive materials. For all cladding materials base material was carbon steel SA-516 Gr.70 10 mm thickness, and the clad materials was: austenitic stainless steel (316L and 254SMO), super-duplex (SAF2507) and nickel alloys (alloy 625 and C-276) for 3 mm thickness. For all materials, heat treatment was carried out precisely stress relief annealing in order to reduce the stresses caused by explosive welding process. The static strength tests were performed: bending test, shear test, tensile test and impact test. All tests were performed according to the American standard ASTM SA-264 and ASTM SA-265. In addition, also made the distribution of hardness and macroscopic research where measured parameters of joints and equivalent thickness melted zone (RGP).
EN
In this work, an improved explosive welding technique was introduced to obtaining high-quality metal coatings, where titanium (TA2) foils with different thicknesses of 0.1, 0.2, 0.3, and 0.4 mm were successfully coated on Q235 steel. Systematic investigations of the achieved claddings were conducted using macro- and micro-morphology observations, EDS elemental analyses, mechanical tests (three-point bending and nanoindentation), and electrochemical measurements. It was concluded that the explosive welding technique was an effective way to produce high-quality TA2 coatings. In both morphological analyses and mechanical tests, an excellent bonding quality was confirmed for the cases of TA2 foils with a thickness of greater than 0.1 mm. Meanwhile, the welding window was proved still being practical for predicting the bonding interface characteristics in the explosive welding of the metal foil. The EDS analyses and nanoindentation tests signified inhomogeneous properties of the materials near the bonding interface due to shock-induced work hardening and the formation of molten zone. Eventually, TA2 foil coatings were certified by electrochemical measurement to remarkably enhance the corrosion resistance of the Q235 substrate.
EN
Explosive welding is a complex process involving various phenomena influenced by a series of parameters in a noticeably short span of time which affect the morphology and eventually the quality of the weld. Therefore, this paper aims to investigate the influence of these parameters on material behavior with a series of numerical simulations based on a meshless approach. The developed model is based on the SPH (Smoothed Particle Hydrodynamics) method and is used to investigate Ti/Cu system behavior as a case study. Examples of the resulting temperatures and pressures as a function of process setup are presented within the paper. The results obtained demonstrate how weld morphology is related to the process conditions.
EN
Development of a reliable numerical model capturing major physical mechanisms controlling explosive welding and considering properties of all process components i.e. base plate and flyer plate is the goal of the paper. To properly replicate materials behavior under these severe conditions a meshfree approach, namely Smooth Particle Hydrodynamics (SPH), was used to discretize the computational domain. The model is based on the Mie-Gruneisen shock equation of state applied to the Ti/Cu system as a case study. Examples of results in the form of velocity, equivalent stress, equivalent strain, and pressure fields are presented within the paper.
EN
Within the framework of this study, the 1050A/AZ31 round bimetal bars were produced by the explosive cladding method and subsequent groove rolling process. LM/SEM investigation shown that by proper selection of the explosive cladding parameters (mainly initial distance between 1050A tube and AZ31 core and detonation velocity) it is possible to produce 1050A/AZ31 feedstocks without a continuous layer of Mg–Al intermetallic phases on the interface between joined materials. The experimental tests of the groove rolling process of 1050A/AZ31 bars were supplemented with a theoretical analysis using FEM-based numerical modelling. Based on the test results obtained, it was found that the interface of the 1050A/AZ31 bar rolling at a temperature (300 °C) was characterized by the generation of a thin continuous intermetallic layer without cracks. Applying a higher rolling temperature of 400 °C, which is usually used in hot forming processes of Mg alloys, led to the production of a thicker intermetallic layer, which cracked during the rolling process as a result of deformation. Strength of the fabricated bimetal joints was high, they did not delaminate during shear tests.
EN
Initiation and evolution of fatigue cracks at the interfaces in three-layer Zr–Ti/Zr–Steel composites is herein examined by in situ optical microscopy for the first time. Specimens cut out from three composite plates comprising Zr 700, Ti Gr. 1, and P265GH steel layers have been subjected to uniaxial fatigue cyclic loading. It is found that mechanical property mismatch between layers and defects at the interfaces can reduce the fatigue life of composite plates. An insight into the evolution of cracks initiated at the interfaces reveals that (1) most of the cracks grow into adjacent layers along two distinct planes, and (2) these cracks could lead to the fatigue failure of composites. One of these planes coincides with the adiabatic shear band orientation found in Ti Gr. 1 and Zr 700 layers. The interfaces in multilayer metallic composite could have excellent fatigue strength depending on their structural properties.
PL
Materiały wybuchowe indywidualne typu: heksogen, oktogen czy trotyl można scharakteryzować poprzez wyznaczenie ich parametrów termochemicznych i detonacyjnych. Część tych parametrów można modyfikować poprzez zmianę średnicy ładunku, rodzaju obudowy czy gęstości. Jednak o wiele większą możliwość ich zmiany można uzyskać formując mieszaniny z różnymi dodatkami. W pracy przedstawiono przegląd danych literaturowych dotyczących wpływu różnych dodatków na parametry detonacyjne i termochemiczne indywidualnych MW oraz wyniki badań wybranych parametrów detonacyjnych kompozycji heksogenu i oktogenu z mikrosferami szklanymi i mikrobalonami wytworzonymi z tworzywa sztucznego. Mierzonymi parametrami były: średnica i warstwa krytyczna oraz prędkość detonacji. Stwierdzono wzrost średnicy i warstwy krytycznej oraz spadek prędkości detonacji wraz ze wzrostem zawartości inercyjnego składnika w wybuchowej mieszaninie.
EN
Individual explosives such as hexogen, octogen or TNT can be characterized by determining their thermochemical and detonation parameters. Some of these parameters can be modified by changing the diameter of the charge, type of confined or density. However, a much greater possibility of their change can be obtained by forming mixtures with various additives. The paper presents the results review of literature data regarding the impact of various additives on the detonation and thermochemical parameters of individual explosives and of research on selected detonation parameters of hexogen and octogen compositions with glass microspheres and microballoons made of plastic. Measured parameters were: critical diameter and layer as well as detonation velocity. An increase in the critical diameter and layer was observed as well as a decrease in the detonation velocity along with th increase in the content of the inertial component in the explosive mixture.
EN
The paper describes methods for the explosive hardening of metals which were performed with a view to increasing the hardness of previously obtained composites, as well as treatment of their surface layers to increase the efficiency of further thermochemical treatment. Typical systems for explosive hardening of metals and the construction of current systems, are discussed. The resulting effects of explosive hardening are illustrated with before and after diagrams of microhardness distributions in cross-sections of the processed composites hardening. In a further processing stage, the tested composite samples were subjected to ion nitriding. As a result of this process, in addition to the typical increase in hardness of the individual layers, an intermediate phase with a distinctly higher hardness was observed in the junction zone. Preliminary analysis of the photographs and the results from a scanning electron microscope (SEM) with an energy dispersive spectroscopy (EDS) attachment suggests that the particularly beneficial properties of the composites are attributed to the presence of the intermetallic layer.
PL
W pracy opisano sposoby wybuchowego umacniania metali, które wykonywano w celu uzyskania wzrostu twardości otrzymanych wcześniej kompozytów, a także dla zdefektowania ich warstw wierzchnich, aby zwiększyć skuteczność dalszej obróbki cieplno-chemicznej. Omówiono typowe układy do wybuchowego umacniania metali oraz konstrukcję układu stosowanego w praktyce. Uzyskane efekty wybuchowego umacniania zilustrowano wykresami rozkładów mikrotwardości, w przekrojach poprzecznych obrabianych kompozytów, przed i po umacnianiu wybuchowym. W dalszym etapie obróbki badane próbki kompozytów poddano jarzeniowemu azotowaniu. W wyniku tego procesu, oprócz typowego wzrostu twardości poszczególnych warstw, zaobserwowano występowanie w strefie złącza fazy pośredniej o wyraźnie wyższej twardości. Wstępna analiza zdjęć i wyników ze scaningowego mikroskopu elektronowego z przystawką EDS pozwala przypuszczać, że jest to warstwa międzymetaliczna., której obecność nadaje kompozytom szczególnie korzystne właściwości.
EN
In this work the results of trials aimed at selecting optimal settings of the explosion welding process of 10 mm thick zirconium (Zr 700 grade) plates with carbon steel (P265GH grade) are presented. A bimetal Zr-steel and trimetal Zr-Ti-steel and Zr-Zr-steel where: 2 mm Ti and 3 mm Zr were used as a technological intermediate layer facilitating the bonding. The research was carried out for as-bonded joints, i.e. immediately following explosion welding. Structural analyses in leyers near the interface were focused on the characteristic of the joint interface. Mechanical properties of the obtained clads were measured with shearing, peel and lateral bending tests. Systematic measurements of microhardness distribution enabled analyzing the strain-hardening of the material resulting from explosion welding both at the bond interface zone and throughout the whole section of the clad. It was established that during explosion welding with 10 mm Zr 700 the application of the 2 mm or 3 mm thick interlayers of Zr70 or Ti grade 1, respectively, allows obtaining a joint with good mechanical properties and optimal characteristic of the interface.
EN
Multilayered composites based on light metals are promising materials in many applications. In the present work the 15-layered clad, composed of alternately stacked of Ti(Gr.1) and AA1050-H24 alloy sheets of 1 mm thick has been investigated with respect to determination of the kinetic of the Al3Ti phase growth. The defect-free multilayered composite was successfully formed by explosive welding technology. Then EXW samples were modified via annealing at the temperature of 600°C in closed die under pressure of 44 MPa for various times ranged between 1 and 10 h. Transmission and Scanning Electron Microscopy examinations were conducted in order to study the kinetic of the elements migration across the interfaces between the layers of the Al/Ti composite. The macro-scale observations of samples after EXW revealed that wavy interfaces were always formed in layers near the explosive charge. The increase of the distance from the top surface leads to flattening of the interface with very thin reaction layer between Al and Ti sheets. During annealing the kinetic of the Al3Ti phase growth is similar near all interfaces and coincides with data from other works. It was found that despite the loading after 10 h of annealing still only small part of Al-sheets undergoes dissolution and the width of the reaction layer does not exceed 5-8 μm.
EN
In this work, the effect of heat transfer during explosive welding (EXW) and post-processing annealing on the microstructural and chemical composition changes have been thoroughly analysed using scanning and transmission electron microscopies and X-ray synchrotron radiation. Several combination of explosively welded metal compositions were studied: Ti with Al, Cu with Al, Ta or stainless steel, stainless steel with Zr or Ta and Ti with carbon steel. It was found that the melted metals exhibit a strong tendency to form brittle crystalline, nano-grained or even amorphous phases during the solidification. For all analysed metal combinations most of the phases formed in the zones of solidified melt do not appear in the equilibrium phase diagrams. Concurrently, the interfacial layers undergo severe plastic deformation forming nano-grained structures. It has been established that these heavily deformed areas can undergo dynamic recovery and recrystallization already during clad processing. This leads to the formation of new stress-free grains near the interface. In the case of low temperature and short time post processing annealing only the melted zones and severely deformed layers undergo recovery and recrystallization. However, drastic changes in the microstructure occurs at higher temperature and for longer annealing times. Applying such conditions leads to diffusion dominant processes across the interface. As a consequence continuous layers of intermetallic phases of equilibrium composition are obtained.
PL
W pracy porównano własności statyczne oraz zmęczeniowe materiałów platerowanych przed oraz po obróbce cieplnej. We wszystkich przypadkach zastosowano jednakowy materiał podstawowy – stal niestopową P355NH, zaś materiałami nakładanymi były stale austenityczne: 254SMO, 316L, stopy niklu: C-276, Alloy 625 oraz super-duplex SAF2507. W ramach pracy przeprowadzono obróbkę cieplną w temperaturze 910°C, a następnie wykonano badania statyczne (próba zginania, ścinania, rozciągania), badanie udarności, rozkładu twardości w przekroju próbki oraz badania na cykliczne zginanie.
EN
This paper describe the comparison of static and fatigue properties of clad materials before and after heat treatment. In all cases was used the same base material - P355NH carbon steel and the clad materials was: 254SMO and 316L austenitic steels, C-276 and alloy 625 nickel alloys, as well as SAF2507 super-duplex. As part of the work, heat treatment was carried out at 910°C and then static tests (bend test, shear test, tensile test) impact test, hardness distribution tests in the specimen cross-section and cyclic bending were performed.
PL
W pracy opisano strukturę, właściwości mechaniczne oraz rozwój pęknięć zmęczeniowych w układach platerów cyrkon-stal zgrzewanych wybuchowo, poddanych długotrwałemu oddziaływaniu temperatury. Próbki w stanie po spojeniu wygrzewano w temperaturze 600°C w czasie 10 i 100 godzin, a następnie poddano obserwacjom mikroskopowym, określono twardość, wytrzymałość na rozciąganie oraz poddano wahadłowemu zginaniu. W odkształconych próbkach zaobserwowano wzrost pęknięć zmęczeniowych równolegle do przyłożonego obciążenia, przy czym inicjacja pęknięć występowała w stali.
EN
The paper describes the structure, mechanical properties and fatigue cracks growth in explosively welded zirconium - carbon steel cladding system subjected to long-lasting temperature impact. After annealing at 600°C for 10 and 100 hours the samples were subjected to microscopic observations and finally the microhardness, tensile strength and cyclic bending were determined. In the deformed specimens the initiation of fatigue cracks occurred in the steel whereas further cracks growth occurred parallel to the applied load.
first rewind previous Strona / 4 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.