Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  event-triggered control
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
An adaptive neural network (NN) event-triggered trajectory tracking control scheme based on finite time convergence is proposed to address the problem of trajectory tracking control of underdriven surface ships. In this scheme, both NNs and minimum learning parameters (MLPS) are applied. The internal and external uncertainties are approximated by NNs. To reduce the computational complexity, MLPs are used in the proposed controller. An event-triggered technique is then incorporated into the control design to synthesise an adaptive NN-based event-triggered controller with finite-time convergence. Lyapunov theory is applied to prove that all signals are bounded in the tracking system of underactuated vessels, and to show that Zeno behavior can be avoided. The validity of this control scheme is determined based on simulation results, and comparisons with some alternative schemes are presented.
EN
This article investigates the problem of rapid exponential stabilization for nonlinear continuous systems via event-triggered impulsive control (ETIC). First, we propose a trigger mechanism that, when triggered by a predefined event, causes the closed-loop system exponentially stable. Then, the exponential stabilization is achieved by the designed ETIC with or without data dropout. The case where there are delays in the ETIC signals is also studied, and the exponential stabilization is proved. Finally, a numerical study is presented, along with numerical illustrations of the stability results.
EN
This paper examines the decentralized controller for a software interconnected system subject to malicious attack. The security of software interconnected system (SIS) subject to malicious attacks is discussed using Event-Triggered Mechanism (ETM). We design a novel ETM with decentralized feedback for managing resources and keeping system stable during attacks. We use Numenta-Hierarchical Temporal Memory (N-HTM) for monitoring the ETM values. Numerical simulation of service provider system is considered for illustrating our model's effectiveness. Experiments reveal that our model stabilizes system after an average of 2s from the launch of last attack. Average consumption of the resources is reduced by 70%.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.