The notion of heat uncompensated transformation has early been introduced by Clausius in 1854 and next, after fifty years of forgetting, in 1904 Duhem has revalorized it and combined it with a new notion of work uncompensated transformation [3]. In this way the so-called ClausiusDuhem inequality has been established. In our paper we wish to present a novelized procedure of estimating the role of the uncompensated transformations of heat and work within the flow of viscous and heat conducting working fluid like water stream. The original procedure was introduced by Puzyrewski and it is essential in expressing of a local, in time and space, balance of entropy. Futhermore, this unique approach leads to redefinition of the efficiency notion, as is usually applied to fluid-flow machineries, to a new one important in computational fluid dynamics (CFD) three-dimensional modeling. As a result, it is shown that usage of the polytropic efficiency, instead of the isentropic efficiency, is more convenient and seems to be natural in CFD approach. Helpfully, we have also found a correlation between those two efficiency definitions with usage of proposed new dimensionless (criterion) number.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.