Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  error proneness
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Machine learning algorithms are widely used in the assessment of error-proneness in software. We conducted several experiments with error prediction on public PROMISE repository. We used Decision Tree and Random Forest algorithms. We also examined techniques aiming at the improvement of performance and accuracy of the model - such as oversampling, hyperparameter optimization or threshold adjustment. The outcome of our experiments suggests that Random Forest algorithm, with 100 - 1000 trees, can be used to obtain high values of evaluation parameters such as accuracy and balanced accuracy. However, it has to be implemented with a set of techniques countering imbalance of the datasets used to assure high values of precision and recall that correspond with correct detection of erroneous software. Additionally, it was shown that the oversampling and hyperparameter optimization could be reliably applied to the algorithm, while threshold adjustment technique was not found to be consistent.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.